Skip to content Skip to sidebar Skip to footer

Oct-Nov-21-p1-CIE-0606/11 : Solution










2021 CIE (Additional Mathematics), Paper 1 ၏ Question နှင့် Solution များ ဖြစ်ပါသည်။ Question Paper ကို ဒီနေရာမှာ Download ယူနိုင်ပါသည်။









  1. The diagram shows the graph of $y=a \sin \dfrac{x}{b}+c$ for
    $-360^{\circ} \le x \le 360^{\circ}$,




    (a) Write down the period of $a \sin \dfrac{x}{b}+c$.



    [1]




    (b) Find the value of $a$, of $b$ and of $c$.



    [3]





  2. SOLUTION
    $\begin{aligned}
    \text{(a)}\quad \frac{1}{4} \text{ period }&=270^{\circ}\\\\
    1 \text{ period } &=270^{\circ} \times 4\\\\
    &=1080^{\circ}\\\\
    \end{aligned}$


    $\begin{aligned}
    \text{(b)}\quad &-1 \le \sin \frac{x}{b} \le 1 \\\\
    &-a \le a \sin \frac{x}{b} \le a \\\\
    &-a+c \le a \sin \frac{x}{b}+c \le a+c\\\\
    \therefore\ &-a+c=-6 \quad \ldots(1)\\\\
    \end{aligned}$


    $\begin{aligned}
    a+c &=2 \ldots(2) \\\\
    \text{By } (1) &+(2), \\\\
    2 c &=-4 \\\\
    c &=-2 \\\\
    \text{By } (2) &-(1), \\\\
    2 a &=8 \\\\
    a &=4\\\\
    \text{When } x&=90^{\circ},\\\\
    a \sin \frac{x}{b}+c&=0\\\\
    4 \sin \frac{90^{\circ}}{b}-2&=0\\\\
    \sin \frac{30^{\circ}}{b}&=\frac{1}{2}\\\\
    \frac{90^{\circ}}{b}&=30^{\circ}\\\\
    \therefore\ b&=3
    \end{aligned}$



  3. Points $A$ and $C$ have coordinates $(-4, 6)$ and $( 2, 18)$ respectively.
    The point $B$ lies on the line $A C$ such that
    $\overrightarrow{A B}=\dfrac{2}{3} \overrightarrow{A C}$.




    (a) Find the coordinates of $B$.



    [2]




    (a) Find the equation of the line $l$, which is perpendicular
    to $AC$ and passes through B.



    [2]




    (c) Find the area enclosed by the line $l$ and the coordinate axes.



    [2]



  4. SOLUTION
    $\begin{aligned}
    \text{ (a) } \quad \overrightarrow{O A} &=\left(\begin{array}{c}
    -4 \\\\
    6
    \end{array}\right) \\\\
    \overrightarrow{O C} &=\left(\begin{array}{c}
    2 \\\\
    18
    \end{array}\right) \\\\
    \text { Let } \overrightarrow{O B} &=\left(\begin{array}{l}
    x \\\\
    y
    \end{array}\right) \\\\
    \overrightarrow{A B} &=\overrightarrow{O B}-\overrightarrow{O A} \\\\
    &=\left(\begin{array}{l}
    x \\\\
    y
    \end{array}\right)-\left(\begin{array}{c}
    -4 \\\\
    6
    \end{array}\right) \\\\
    &=\left(\begin{array}{l}
    x+4 \\\\
    y-6
    \end{array}\right)\\\\

    \overrightarrow{A C} &=\overrightarrow{O C}-\overrightarrow{O A} \\\\
    &=\left(\begin{array}{c}
    2 \\\\
    18
    \end{array}\right)-\left(\begin{array}{r}
    -4 \\\\
    6
    \end{array}\right) \\\\
    &=\left(\begin{array}{c}
    6 \\\\
    12
    \end{array}\right) \\\\
    \overrightarrow{A B} &=\dfrac{2}{3} \overrightarrow{A C} \\\\
    \left(\begin{array}{c}
    x+4 \\\\
    y-6
    \end{array}\right) &=\dfrac{2}{3}\left(\begin{array}{c}
    6 \\\\
    12
    \end{array}\right) \\\\
    \left(\begin{array}{c}
    x+4 \\\\
    y-6
    \end{array}\right) &=\left(\begin{array}{c}
    4 \\\\
    8
    \end{array}\right)\\\\
    \therefore x+4 &=4 \\\\
    x &=0 \\\\
    y-6 &=8 \\\\
    y &=14 \\\\
    \end{aligned}$


    $\therefore$ The point $B$ is $(8,14)$.



    $\text{ (a) }$ Let the gradient (slope) of $A C$ be $m_{A C}.$


    $\begin{aligned}
    &\\
    &\therefore m_{A C}=\dfrac{18-6}{2-(-4)}=\dfrac{12}{6}=2 \\\\
    &l \perp A C \\\\
    &\therefore m_{l}=-\dfrac{1}{2}\\\\
    \end{aligned}$


    $\therefore$ Equation of the line l is



    $\begin{aligned}
    &\\
    y-14&=-\dfrac{1}{2}(x-0)\\\\
    y&=-\dfrac{1}{2} x+14\\\\
    \end{aligned}$





    $\text{ (c) }$ When $x=0, y=14\\\\ $.


    $\therefore\ l$ cuts $y$-axis at $(0,14).\\\\ $


    When $y=0, x=28\\\\ $


    $\therefore\ l$ cuts $x$-axis at $(28,0).\\\\ $


    The area enclosed by $l$ and coordinate axes is


    $\begin{aligned}
    &\\
    A &=\dfrac{1}{2} \times 28 \times 14 \\\\
    &=196 \text { sq-units. }
    \end{aligned}$




  5. (a) Find the vector which has magnitude $39$ and is in the same direction as
    $\left(\begin{array}{r}12 \\ -5\end{array}\right)$.



    [2]




    (b) Given that $\mathbf{a}=\left(\begin{array}{r}
    2 \\
    -1
    \end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{r}
    -4 \\
    5
    \end{array}\right)$, find the constants $\lambda$ and $\mu$ such that $5 \mathbf{a}+\lambda\left(\begin{array}{l}
    4 \\
    6
    \end{array}\right)=\mu \mathbf{b}$



    [4]


  6. SOLUTION
    $\text {(a) }\quad$ Let $\vec{a}=\left(\begin{array}{c}12 \\\\ -5\end{array}\right).$


    $\begin{aligned}
    &\\
    \therefore\ |\vec{a}| &=\sqrt{12^{2}+(-5)^{2}} \\\\
    &=\sqrt{169} \\\\
    &=13 \\\\
    \therefore\ \quad \hat{a} &=\frac{\vec{a}}{|\vec{a}|} \\\\
    &=\frac{1}{13}\left(\begin{array}{l}
    12 \\\\
    -5
    \end{array}\right)
    \end{aligned}$


    Let the required vector be $\vec{b}$.


    $\begin{aligned}
    &\\
    \therefore\ |\vec{b}|=39 \text { (given) }
    \end{aligned}$


    Since $\vec{b}$ is in the same direction as $\vec{a}$.


    $\begin{aligned}
    &\\
    \vec{b} &=|\vec{b}| \hat{a} \\\\
    &=39 \times \frac{1}{13}\left(\begin{array}{c}
    12 \\\\
    -5
    \end{array}\right) \\\\
    &=\left(\begin{array}{c}
    36 \\\\
    -15
    \end{array}\right)\\\\
    \end{aligned}$


    $\begin{aligned}
    \text {(b) } \quad &\vec{a}=\left(\begin{array}{c}
    2 \\\\
    -1
    \end{array}\right) \\\\
    &\vec{b}=\left(\begin{array}{c}
    -4 \\\\
    5
    \end{array}\right) \\\\
    &5 \vec{a}+\lambda\left(\begin{array}{c}
    4 \\\\
    6
    \end{array}\right)=\mu b \\\\
    &5\left(\begin{array}{c}
    2 \\\\
    -1
    \end{array}\right)+\lambda\left(\begin{array}{c}
    4 \\\\
    6
    \end{array}\right)=\mu\left(\begin{array}{c}
    -4 \\\\
    5
    \end{array}\right) \\\\
    &\left(\begin{array}{c}
    10 \\\\
    -5
    \end{array}\right)+\left(\begin{array}{c}
    4 \lambda \\\\
    6 \lambda
    \end{array}\right)=\left(\begin{array}{c}
    -4 \mu \\\\
    5 \mu
    \end{array}\right) \\\\
    &\left(\begin{array}{c}
    10+4 \lambda \\\\
    -5+6 \lambda
    \end{array}\right)=\left(\begin{array}{c}
    -4 \mu \\\\
    5 \mu
    \end{array}\right)\\\\
    \end{aligned}$


    $\begin{aligned}
    \therefore\ 10+4 \lambda &=-4 \mu \\\\
    \therefore\ \mu &=\frac{-(5+2 \lambda)}{2} \\\\
    -5+6 \lambda &=5 \mu \\\\
    -5+6 \lambda &=\frac{-5(5+2 \lambda)}{2} \\\\
    -10+12 \lambda &=-25-10 \lambda \\\\
    22 \lambda &=-15 \\\\
    \lambda &=-\frac{15}{22} \\\\
    \mu &=-\frac{1}{2}\left(5+2\left(-\frac{15}{22}\right)\right) \\\\
    &=-\frac{20}{11}
    \end{aligned}$







  7. (a) Given that $\dfrac{q^{-2} \sqrt{p r}}{\sqrt[3]{r}(p q)^{-3}}=p^{a} q^{b} r^{c}$,
    find the value of each of the constants $a, b$ and $c$.



    [3]




    (b) Solve the equation $3 x^{\frac{4}{5}}-8 x^{\frac{2}{5}}+5=0$.



    [4]


  8. SOLUTION
    $\begin{aligned}
    \text{ (a) } \hspace{2.5cm} \frac{q^{-2} \sqrt{p r}}{\sqrt[3]{r}(p q)^{-3}} &=p^{a} q^{b} r^{c} \\\\
    \frac{q^{-2} p^{\frac{1}{2}} r^{\frac{1}{2}}}{r^{\frac{1}{3}} p^{-3} q^{-3}} &=p^{a} q^{b} r^{e} \\\\
    (p)^{\frac{1}{2}+3} (q)^{-2+3} (r)^{\frac{1}{2}-\frac{1}{3}} &=p^{a} q^{b} r^{e} \\\\
    p^{\frac{7}{2}} q r^{\frac{1}{6}} &=p^{a} q^{b} r^{e}\\\\
    \therefore a &=\frac{7}{2} \\\\
    b &=1 \\\\
    c &=\frac{1}{6}\\\\
    \end{aligned}$


    $\begin{aligned}
    \text{ (b) } \hspace{2cm} 3 x^{\frac{4}{5}}-8 x^{\frac{2}{5}}+5 &=0 \\\\
    3\left(x^{2 / 5}\right)^{2}-8 x^{2 / 5}+5&=0 \\\\
    \left(3 x^{2 / 5}-5\right)\left(x^{2 / 5}-1\right)&=0 \\\\
    x^{2 / 5}=\frac{5}{3} \text { (or) } x^{2 / 5}&=1 \\\\
    x=\left(\frac{5}{3}\right)^{5 / 2} \text { (or) } x&=7
    \end{aligned}$



  9. The polynomial $\mathrm{p}(x)=a x^{3}+b x^{2}+6 x+4$, where $a$ and $b$ are integers,
    is divisible by $x-2$. When $\mathrm{p}^{\prime}(x)$ is divided by $x+1$ the remainder is $-7$.




    (a) Find the value of $a$ and of $b$.



    [5]




    (b) Using your answers to part (a), find the remainder when
    $\mathrm{p}^{\prime \prime}(x)$ is divided by $x$.



    [2]


  10. SOLUTION
    $\begin{aligned}
    &p(x)=a x^{3}+b x^{2}+6 x+4 \\\\
    &p^{\prime}(x)=3 a x^{2}+2 b x+6 \\\\
    &p(x) \text { is divisible by } x-2, \\\\
    \therefore\ & p(2)=0 \\\\
    &8 a+4 b+12+4=0 \\\\
    &2 a+b=-4 \\\\
    &b=-2 a-4 \\\\
    &\text { When } p^{\prime}(x) \text { is divided by }(x+1),\\\\
    & p(x)=a x^{3}+b x^{2}+6 x+4 \\\\
    & p^{\prime}(x)=3 a x^{2}+2 b x+6 \\\\ & p(x) \text { ie divisible by } x-2, \\\\
    \therefore\ & p(2)=0 \\\\
    & 8 a+4 b+12+4=0 \\\\
    & 2 a+b=-4 \\\\
    & b=-2 a-4 \\\\
    & \text { When } p^{\prime}(x) \text { is divided by }(x+1) \\\\
    & \text { the remainder is - } 7 . \\\\
    \therefore\ & p(-1)=-7 \\\\
    & 3 a-2 b+6=-7\\\\
    & 3 a-2 b=-13 \\\\
    & 3 a-2(-2 a-4)=-13 \\\\
    & 3 a+4 a+8=-13 \\\\
    & 7 a=-21 \\\\
    & a=-3 \\\\
    \therefore \ & b=-2(-3)-4 \\\\
    & b=2 \\\\
    \therefore \ & p^{\prime}(x)=-9 x^{2}+4 x+6 \\\\
    \therefore \ & p^{\prime \prime}(x)=-18 x+4\\\\
    \end{aligned}$


    When $p^{\prime \prime}(x)$ is divided by $x$,



    $\begin{aligned}
    &\\
    \text{ the remainder } &=p^{\prime \prime}(0)\\\\
    &=-18(0)+4 \\\\
    &=4
    \end{aligned}$



  11. A curve with equation $y=f(x)$ is such that
    $\dfrac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 \mathrm{e}^{3 x}+4 x$.
    The curve has a gradient of 5 at the point $\left(0, \dfrac{5}{3}\right)$. Find $f(x)$.


    [7]







  12. SOLUTION
    $\begin{aligned}
    y &=f(x) \\\\
    \frac{d^{2} y}{d x^{2}} &=6 e^{3 x}+4 x \\\\
    \therefore\ \frac{d y}{d x} &=\displaystyle\int\left(6 e^{3 x}+4 x\right) d x \\\\
    &=6 \displaystyle\int e^{3 x} d x+4 \displaystyle\int x d x \\\\
    &=\frac{6}{3} e^{3 x}+\frac{4}{2} x^{2}+c_{1} \\\\
    &=2\left(e^{3 x}+x^{2}\right)+c_{1}\\\\
    \end{aligned}$


    The curve has gradient of 5 at the point $\left(0, \dfrac{5}{3}\right)$.


    $\begin{aligned}
    &\\
    \therefore\ {{\left. {\frac{{dy}}{{dx}}} \right|}_{{\left( {0,\frac{5}{3}} \right)}}}&=5 \\\\
    2\left(e^{0}+0\right)+c_{1} &=5 \\\\
    \therefore\ c_{1} &=3 \\\\
    \therefore\ \frac{d y}{d x} &=2 e^{3 x}+2 x^{2}+3\\\\
    \therefore\ y &=\displaystyle\int\left(2 e^{3 x}+2 x^{2}+3\right) d x \\\\
    &=2 \displaystyle\int e^{3 x} d x+2 \displaystyle\int x^{2} d x+3 \displaystyle\int d x \\\\
    &=\frac{2}{3} e^{3 x}+\frac{2}{3} x^{3}+3 x+c_{2}\\\\
    \end{aligned}$


    Since $\left(0, \dfrac{5}{3}\right)$ lies on the curve,


    $\begin{aligned}
    &\\
    \frac{5}{3} &=\frac{2}{3} e^{0}+\frac{2}{3}(0)^{3}+3(0)+c_{2} \\\\
    \therefore\ c_{2} &=1 \\\\
    \therefore\ f(x) &=\frac{2}{3} e^{3 x}+\frac{2}{3} x^{3}+3 x+7
    \end{aligned}$



  13. The first three terms, in ascending powers of $x$, in the expansion
    of $(2+a x)^{n}$ can be written as $64+b x+c x^{2}$, where $n, a, b$ and $c$ are constants.




    (a) Find the value of $n$.



    [1]




    (b) Show that $5 b^{2}=768 c$.



    [4]




    (c) Given that $b = 12$, find the exact value of $a$ and of $c$.



    [2]




  14. SOLUTION
    $\begin{aligned}
    &(2+a x)^{n}=64+b x+c x^{2}+\cdots \\\\
    &2^{n}+n 2^{n-1}(a x)+\frac{n(n-1)}{2} 2^{n-2}(a x)^{2}=64+b x+c x^{2}+\cdots \\\\
    \therefore \quad &2^{n}=64 \\\\
    &2^{n}=2^{6} \\\\
    &n=6 \\\\
    \therefore \quad & 6\left(2^{5}\right)(a x)=b x \\\\
    \therefore \quad & b=192 a \\\\
    &a=\frac{b}{192}\\\\
    \end{aligned}$


    $\begin{aligned}
    \frac{6 \times 5}{2} \times 2^{4} a^{2} x^{2} &=c x^{2} \\\\
    240 a^{2} x^{2} &=c x^{2} \\\\
    c &=240 a^{2} \\\\
    \therefore \quad c &=240\left(\frac{b}{192}\right)^{2} \\\\
    \therefore \quad 5 b^{2} &=768 c\\\\
    b &=12\quad \text { (given) } \\\\
    \therefore a &=\frac{12}{192} \\\\
    &=\frac{1}{16} \\\\
    c &=\frac{5 \times 12^{2}}{768} \\\\
    &=\frac{15}{16}
    \end{aligned}$





  15. The diagram shows a circle, centre $O$, radius $5$ cm. The lines $AOB$ and $COD$ are
    diameters of this circle. The line $AC$ has length $6$ cm.



    (a) Show that angle $AOC = 1.287$ radians, correct to $3$ decimal places.



    [2]




    (b) Find the perimeter of the shaded region.



    [2]



    (c) Find the area of the shaded region.



    [3]



  16. SOLUTION
    By cosine rule,


    $\begin{aligned}
    &\\
    \cos (\angle A O C) &=\frac{5^{2}+5^{2}-6^{2}}{2 \times 5 \times 5} \\\\
    &=\frac{7}{25} \\\\
    \angle A O C &=\cos ^{-1}\left(\frac{7}{25}\right) \\\\
    \therefore\ \angle B O D &=1.287\quad \mathrm{rad}\\\\
    \end{aligned}$


    length of arc $B D=O B\times\angle B O D$


    $\begin{aligned}
    &\\
    &=5(1.287) \\\\
    &=6.44\\\\
    \end{aligned}$


    $\begin{aligned}
    &\quad \text{perimeter of shaded regron}\\\\
    &=A C+\operatorname{arc} B D+A B+C D \\\\
    &=6+6.44+10+10 \\\\
    &=32.44 \\\\
    &=32.4 \text { (3~sff) }\\\\
    \end{aligned}$


    $\begin{aligned}
    &\quad \text {area of } \triangle A O C\\\\
    &=\frac{1}{2} O C \sin (\angle A O C) \times O A \\\\
    &=\frac{1}{2}(5) \sin (1.287) \times 5 \\\\
    &=12 \\\\
    &\quad \text {area of sector } BOD \\\\
    &=\frac{1}{2} \times O B^{2}\times\angle B O D \\\\
    &=\frac{1}{2}\left(5^{2}\right)(1.287) \\\\
    &=16.1 \\\\
    &\quad \text {area of shaded region } \\\\
    &=12+16.1 \\\\
    &=28.1
    \end{aligned}$







  17. (a) Find the coordinates of the stationary points on the curve
    $y=(2 x+1)(x-3)^{2}$. Give your answers in exact form.



    [4]




    (b) On the axes below, sketch the graph of $y=\left|(2 x+1)(x-3)^{2}\right|,$
    stating the coordinates of the points where the curve meets the axes.




    [4]







    (c) Hence write down the value of the constant $k$ such that
    $\left|(2 x+1)(x-3)^{2}\right|=k $ has exactly 3 distinct solutions.



    [1]


  18. SOLUTION
    $\begin{aligned}
    \text{(a) }\quad y &=(2 x+1)(x-3)^{2} \\\\
    \dfrac{d y}{d x} &=(2 x+1) \dfrac{d}{d x}(x-3)^{2}+(x-3)^{2} \dfrac{d}{d x}(2 x+1) \\\\
    &=2(2 x+1)(x-3)+2(x-3)^{2} \\\\
    &=2(x-3)(2 x+1+x-3) \\\\
    &=2(x-3)(3 x-2) \\\\
    \dfrac{d y}{d x} &=0 \text { when }\\\\
    \end{aligned}$


    $\begin{aligned}
    \quad &2(x-3)(3 x-2)=0 \\\\
    \quad &\therefore x=3 \text { or } x=\dfrac{2}{3} \\\\
    \quad &\text { When } x=\dfrac{2}{3}, y=\dfrac{343}{27} \\\\
    \quad &\text { When } x=3, y=0 \\\\
    \end{aligned}$


    $\therefore$ The stationary points are $\left(\dfrac{2}{3}, \dfrac{343}{27}\right)$ and $(3,0).$


    $\begin{aligned}
    &\\
    \text{(b) } \hspace{1.5cm} \dfrac{d^{2} y}{d x^{2}} &=2\left[(x-3) \dfrac{d}{d x}(3 x-2)+(3 x-2) \dfrac{d}{d x}(x-3)\right] \\\\
    \quad &=2[3 x-9+3 x-2] \\\\
    \quad &=2(6 x-11) \\\\
    \quad \left.\dfrac{d^{2} y}{d x^{2}}\right|_{\left(\dfrac{2}{3}, 0\right)} &=2\left(6 \times \dfrac{2}{3}-11\right)\\\\
    \quad &=-14<0\\\\
    \end{aligned}$


    $\quad \therefore \quad \left(\dfrac{2}{3}, 0\right)$ is a minimum turning point.


    $\begin{aligned}
    &\\
    \quad \left.\dfrac{d^{2} y}{d x^{2}}\right|_{(3,0)}&=2(6 \times 3-11)\\\\
    \quad &=14>0
    \end{aligned}$


    $\quad \therefore\quad (3,0)$ is maximum turning point.


    $\begin{aligned}
    &\\
    \quad \text{When } x=0, y=9\\\\
    \quad \therefore\ y-\text{intercept } =(0,9)\\\\
    \quad \text{When } y=0, x=-\dfrac{1}{2} \text{ or } x=3\\\\
    \quad \therefore\ x-\text{intercept } =\left(-\frac{1}{2}, 0\right) \text{ and } (3,0)\\\\
    \end{aligned}$






    $\text{(c) } \quad \left|(2 x+1)(x-3)^{2}\right|=k$ has three distinct solutions.



    This means that the graph of $y=k$ meets the graph
    $y=\left|(2 x+1)(x-3)^{2}\right|$ at three distinct points.



    By the diagram in part $(b)$, this condition is only possible when
    $k=\dfrac{343}{27}$.







  19. (a) Jess runs on 5 days each week to prepare for a race.

    In week 1 , every run is $2$ km.

    In week 2, every run is $2.5 $ km.

    In week 3 , every run is $3 $ km.

    Jess increases the distance of the run by $0.5 $ km every week.




    (i) Find the week in which Jess runs $16 $ km on each of the $5$ days.



    [3]




    (ii) Find the total distance Jess will have run by the end of week $8$.





    [3]



    (b) Kyle also runs on 5 days each week to prepare for a race.

    In week 1 , every run is $2 $ km.

    In week 2, every run is $2.5 $ km.

    In week 3, every run is $3.125 $ km.

    The distances he runs each week form a geometric progression.




    (i) Find the common ratio of the geometric progression.




    [3]




    (ii) Find the first week in which Kyle will run more than $16$ km on each of the $5$ days.



    [3]



    (iii) Find the total distance Kyle will have run by the end of week $8$.



    [3]



  20. SOLUTION
    (a) Jeck runs on 5 days according to the following patterns.



    $\begin{array}{|c|c|c|c|}
    \hline \text{ week 1 } & \text{ week 2 } & \text{ week 3 } & \ldots \\
    \hline 2 \mathrm{~km} \text{ a day } & 2.5 \mathrm{~km} \text{ a day } & 3 \mathrm{~km} \text{ a day } & \ldots \\
    \hline
    \end{array}$



    This is an arithmetic progression with the first term $a=2$ and the common difference $d=0.5$.



    (i) Assume that Jeck runs $16 \mathrm{~km}$ in week $n$.



    $\begin{aligned}
    &\\
    \therefore \quad a+(n-1) d &=16 \\\\
    2+(n-1) 0.5 &=16 \\\\
    (n-1) 0.5 &=14 \\\\
    n &=29\\\\
    \end{aligned}$


    Therefore, Jeck runs $16 \mathrm{~km}$ in week $29$ .



    (ii) The total distance that Jecle will run by the end of week $8$ is


    $\begin{aligned}
    &\\
    & \frac{8}{2} \times\{2(2)+7(0.5)\} \times 5 \\\\
    =& 150 \text{ km}\\\\
    \end{aligned}$



    (b) Kyle runs on 5 days aecording to the following patterns.



    $\begin{array}{|c|c|c|c|}
    \hline \text{ week 1 } & \text{ week 2 } & \text{ week 3 } & \ldots \\
    \hline 2 \mathrm{~km} \text{ a day } & 2.5 \mathrm{~km} \text{ a day } & 3.125 \mathrm{~km} \text{ a day } & \ldots \\
    \hline
    \end{array}$



    The run of kyle on each week in in the form of geometric progression.



    $\begin{aligned}
    &\\
    \text{(i) }\quad \therefore\ a &=2\\\\
    r &=\frac{2 \cdot 5}{2} \\\\
    &=1 \cdot 25\\\\
    \end{aligned}$


    (ii) Assume that Kyle runs $16 \mathrm{~km}$ in week $n$.



    $\begin{aligned}
    &\\
    a r^{n-1} &>16 \\\\
    2(1.25)^{n-1} &>16 \\\\
    (1.25)^{n-1} &>8 \\\\
    n-1 &>\frac{\ln 8}{\ln 1.25} \\\\
    n-1 &>9.32 \\\\
    n &>10.32 \\\\
    \therefore\ n=11 \\\\
    \end{aligned}$


    Therefore The first week that Kyle runs more than $16 \mathrm{~km}$ is week 11.



    (iii) The total distance Kyle will run by the end of week $8$ is


    $\begin{aligned}
    &\\
    &\frac{2\left(1.25^{8}-1\right)}{1.25-1} \times 5 \\\\
    &=198.42 \mathrm{~km}
    \end{aligned}$




  21. (a) Solve the equation
    $3 \operatorname{cosec}^{2} \theta-5=5 \cot \theta$ for $0^{\circ} \le \theta \le180^{\circ}$.



    [4]




    (b) Solve the equation $\sin \left(\phi+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}$,
    where $\phi$ is in radians and $-\pi \le \phi \le \pi$. Give your answers
    in terms of $\pi$.




    [4]




  22. SOLUTION
    $\begin{aligned}
    \text{(a) } \quad 3 \operatorname{cosec}^{2} \theta-5&=5 \cot \theta, \quad 0^{\circ} \leq \theta \leq 180^{\circ}\\\\
    3\left(1+\cot ^{2} \theta\right)-5 &=5 \cot \theta \\\\
    3+3 \cot ^{2} \theta-5 &=5 \cot \theta \\\\
    3 \cot ^{2} \theta-5 \cot \theta-2 &=0 \\\\
    (3 \cot \theta+1)(\cot \theta-2) &=0 \\\\
    \cot \theta =-\dfrac{1}{3} \text { or } \cot \theta&=2 \\\\
    \theta=\left(180^{3}-4^{2} .56\right) \text { or } \theta &=26.56 \\\\
    \theta=108.44^{\circ} \text { or } \theta &=26.56\\\\
    \end{aligned}$


    $\text{(b) } \quad \sin \left(\phi+\dfrac{\pi}{3}\right)=-\dfrac{1}{2},-\pi \leq \phi \leq \pi\\\\ $


    basic acute angle (reference angle) $=\dfrac{\pi}{6}\\\\ $


    $\sin \left(\phi+\dfrac{\pi}{3}\right)<0, \phi+\dfrac{\pi}{3}$ lies either $3^{r d}$ or $4^{\text {th }}$ quadrant.


    $\begin{aligned}
    &\\
    \therefore \phi+\dfrac{\pi}{3}=\pi+\dfrac{\pi}{6} \quad \text { or } \quad \phi+\dfrac{\pi}{3} &=-\dfrac{\pi}{6} \\\\
    \phi =\dfrac{5 \pi}{6} \quad \text { or } \quad \phi &=-\dfrac{\pi}{2}
    \end{aligned}$

Post a Comment for "Oct-Nov-21-p1-CIE-0606/11 : Solution"

Sponsored by: iklanvideo.io