Skip to content Skip to sidebar Skip to footer

Calculus Exercise (3) : Rate of Change





























General Rules of Differentiation
1 $\dfrac{d C}{d x}=0, C=$ constant
2 $\dfrac{d}{d x} x^{n}=n x^{n-1}$
3 $\dfrac{d}{d x}[u(x) \pm v(x)]=\dfrac{d}{d x}[u(x)] \pm \dfrac{d}{d x}[v(x)]$
4 $\dfrac{d}{d x}[C \cdot u(x)]=C \dfrac{d}{d x} u(x), C=$ constant





  1. Differentiate the following with respect to $x$.


    (a) $4 x^{3}$


    (b) $\dfrac{4}{x^{3}}$


    (c) $\dfrac{2}{\sqrt[3]{x}}$


    (d) $x^{3}+\dfrac{1}{\sqrt{x}}$


    (e) $x^{2}-\dfrac{1}{x}-\dfrac{3}{x^{2}}$


    (f) $\dfrac{3 x^{2}-4 \sqrt{x}+1}{x}$


    (g) $(x+1)(x+2)$


    (h) $(3 x+1)(2-x)$


    (i) $(3 x-2)^{2}$


    (j) $(2 x+1)^{3}$


    (k) $\dfrac{2 x^{3}-3 x^{2}}{4 \sqrt{x}}$


    (l) $x^{3}-2 x+\dfrac{3}{\sqrt{x}}$




  2. solution
    $\begin{aligned}
    \text { (a) }\quad &\frac{d}{d x}\left(4 x^{3}\right)\\\\
    =&12 x\\\\
    \text { (b) }\quad &\frac{d}{d x}\left(\frac{4}{x^{3}}\right)\\\\
    =&\frac{d}{d x}\left(4 x^{-3}\right)\\\\
    =&-12 x^{-4}\\\\
    =&-\frac{12}{x^{4}}\\\\
    \text { (c) }\quad &\frac{d}{d x}\left(\frac{2}{\sqrt[3]{x}}\right)\\\\
    =&\frac{d}{d x}\left(2 x^{-\frac{1}{3}}\right)\\\\
    =&-\frac{2}{3} x^{-\frac{4}{3}}\\\\
    =&-\frac{2}{3 x^{\frac{4}{3}}}\\\\
    \text { (d) }\quad &\frac{d}{d x}\left(x^{3}+\frac{1}{\sqrt{x}}\right)\\\\
    =&\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(x^{-\frac{1}{2}}\right)\\\\
    =&3 x^{2}-\frac{1}{2} x^{-\frac{3}{2}}\\\\
    =&3 x^{2}-\frac{1}{2 x^{\frac{3}{2}}}\\\\
    \text { (e) }\quad &\frac{d}{d x}\left(x^{2}-\frac{1}{x}-\frac{3}{x^{2}}\right) \\\\
    =&\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(x^{-1}\right)-\frac{d}{d x}\left(3 x^{-2}\right) \\\\
    =&2 x+x^{-2}+6 x^{-3} \\\\
    =&2 x+\frac{1}{x^{2}}+\frac{6}{x^{3}} \\\\
    \text { (f) }\quad &\frac{d}{d x}\left(\frac{3 x^{2}-4 \sqrt{x}+1}{x}\right)\\\\
    =&\frac{d}{d x}\left(\frac{3 x^{2}}{x}-\frac{4 \sqrt{x}}{x}+\frac{1}{x}\right) \\\\
    =&\frac{d}{d x}\left(3 x-4 x^{-\frac{1}{2}}+x^{-1}\right) \\\\
    =&3+2 x^{-\frac{3}{2}}-x^{-2} \\\\
    =&3+\frac{2}{x^{\frac{3}{2}}}-\frac{1}{x^{2}}\\\\
    \text { (g) }\quad &\frac{d}{d x}[(x+1)(x+2)]\\\\
    =&\frac{d}{d x}\left(x^{2}+3 x+2\right)\\\\
    =&2 x+3\\\\
    \text { (h) }\quad &\frac{d}{d x}[(3 x+1)(2-x)]\\\\
    =&\frac{d}{d x}\left(2+5 x-3 x^{2}\right)\\\\
    =&5-6 x\\\\
    \text { (i) }\quad &\frac{d}{d x}(3 x-2)^{2}\\\\
    =&\frac{d}{d x}\left(9 x^{2}-12 x+4\right)\\\\
    =&18 x-12\\\\
    \text { (j) }\quad &\frac{d}{d x}(2 x+1)^{3}\\\\
    =&\frac{d}{d x}\left[(2 x)^{3}+3(2 x)^{2}+3(2 x)+1\right]\\\\
    =&\frac{d}{d x}\left[8 x^{3}+12 x^{2}+6 x+1\right] \\\\
    =&24 x^{2}+24 x+6\\\\
    \text { (k) }\quad &\frac{d}{d x}\left[\frac{2 x^{3}-3 x^{2}}{4 \sqrt{x}}\right]\\\\
    =&\frac{d}{d x}\left[\frac{2 x^{3}}{4 \sqrt{x}}-\frac{3 x^{2}}{4 \sqrt{x}}\right]\\\\
    =&\frac{d}{d x}\left[\frac{1}{2} x^{\frac{5}{2}}-\frac{3}{4} x^{\frac{3}{2}}\right]\\\\
    =&\frac{5}{4} x^{\frac{3}{2}}-\frac{9}{8} x^{\frac{1}{2}}\\\\
    \text { (l) }\quad & \frac{d}{d x}\left[x^{3}-2 x+\frac{3}{\sqrt{x}}\right]\\\\
    =&\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}(2 x)+\frac{d}{d x}\left(3 x^{-\frac{1}{2}}\right)\\\\
    =&3 x^{2}-2-\frac{3}{2 x^{\frac{3}{2}}}

    \end{aligned}$


  3. Find $\dfrac{d y}{d x}$.


    (a) $y=3 x^{2}$


    (b) $y=\dfrac{1}{x}$


    (c) $y=\sqrt{x}+\dfrac{1}{\sqrt{x}}$


    (d) $y=x^{3}+2 x^{2}-3 x-6$


    (e) $y=x\left(1-x^{2}\right)^{2}$


    (f) $y=x^{\dfrac{3}{4}}+\dfrac{6}{x^{\dfrac{2}{3}}}$


    (g) $y=\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^{2}$


    (h) $y=\dfrac{(1-x)(3 x+2)}{\sqrt{x}}$


    (i) $y=\left(x-1+\dfrac{1}{x}\right)\left(x-1-\dfrac{1}{x}\right)$





  4. solution
    $\begin{aligned}
    \text{(a)}\quad y &=3 x^{2}\\\\
    \frac{d y}{d x}&=6 x\\\\
    \text{(b)}\quad y &=\frac{1}{x}\\\\
    &=x^{-1}\\\\
    \frac{d y}{d x}&=-x^{-2}\\\\
    &=-\frac{1}{x^{2}}\\\\
    \text{(c)}\quad y&=\sqrt{x}+\frac{1}{\sqrt{x}}\\\\
    &=x^{\frac{1}{2}}+x^{-\frac{1}{2}}\\\\
    \frac{d y}{d x}&=\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{2} x^{-\frac{3}{2}}\\\\
    &=\frac{1}{2}\left[\frac{1}{x^{\frac{1}{2}}}-\frac{1}{x^{\frac{3}{2}}}\right]\\\\
    \text{(d)}\quad y&=x^{3}+2 x^{2}-3 x-6\\\\
    \frac{d y}{d x}&=3 x^{2}+4 x-3\\\\
    \text{(e)}\quad y&=x\left(1-x^{2}\right)^{2}\\\\
    &=x\left(1-2 x^{2}+x^{4}\right)\\\\
    &=x-2 x^{4}+x^{5}\\\\
    \frac{d y}{d x}&=1-8 x^{3}+5 x^{4}\\\\
    \text{(f)}\quad y&=x^{\frac{3}{4}}+\frac{6}{x^{\frac{2}{3}}}\\\\
    &=x^{\frac{3}{4}}+6 x^{-\frac{2}{3}}\\\\
    \frac{d y}{d x}&=\frac{3}{4} x^{-\frac{1}{4}}-4 x^{-\frac{5}{3}}\\\\
    &=\frac{3}{4 x^{\frac{1}{4}}}-\frac{4}{x^{\frac{5}{3}}}\\\\
    \text{(g)}\quad y&=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}\\\\
    &=x+2+\frac{1}{x}\\\\
    &=2+x+x^{-1}\\\\
    \frac{d y}{d x}&=1-x^{-2}\\\\
    &=1-\frac{1}{x^{2}}\\\\
    \text{(h)}\quad y&=\frac{(1-x)(3 x+2)}{\sqrt{x}}\\\\
    &=\frac{2+x-3 x^{2}}{\sqrt{x}}\\\\
    &=2 x^{-\frac{1}{2}}+x^{\frac{1}{2}}-3 x^{\frac{3}{2}}\\\\
    \frac{d y}{d x}&=-x^{-\frac{3}{2}}+\frac{1}{2} x^{-\frac{1}{2}}-\frac{9}{2} x^{\frac{1}{2}}\\\\
    &=-\frac{1}{x^{\frac{3}{2}}}+\frac{1}{2 x^{\frac{1}{2}}}-\frac{9}{2} x^{\frac{1}{2}}\\\\
    \text{(i)}\quad y&=\left(x-1+\frac{1}{x}\right)\left(x-1-\frac{1}{x}\right)\\\\
    &=(x-1)^{2}-\frac{1}{x^{2}}=x^{2}-2 x+1-x^{-2} \\\\
    \frac{d y}{d x}&=2 x-2+2 x^{-3}\\\\
    &=2 x-2+\frac{2}{x^{3}}
    \end{aligned}$

  5. Given $f(x)=\left(x^{2}-3\right)^{2}$, find $f^{\prime}(x)$ and $f^{\prime}(-1)$.


  6. solution
    $\begin{aligned}
    f(x) &=\left(x^{2}-3\right)^{2}\\\\
    &=x^{4}-6 x^{2}+9\\\\
    f^{\prime}(x)&=4 x^{3}-12 x \\\\
    f^{\prime}(-1)&=4(-1)^{3}-12(-1)=8
    \end{aligned}$

  7. Given that $f(x)=4 x^{\frac{3}{2}}$, find $f^{\prime}(x)$ and $f^{\prime}(1), f^{\prime}(4), f^{\prime}\left(\dfrac{1}{9}\right)$.

  8. solution
    $\begin{aligned}
    f(x)&=4 x^{\frac{3}{2}} \\\\
    f^{\prime}(x)&=6 x^{\frac{1}{2}} \\\\
    f^{\prime}(1)&=6(1)^{\frac{1}{2}}\\\\&=6 \\
    f^{\prime}(4)&=6(4)^{\frac{1}{2}}\\\\&=12 \\
    f^{\prime}\left(\frac{1}{9}\right)&=6\left(\frac{1}{9}\right)^{\frac{1}{2}}\\\\&=2
    \end{aligned}$

  9. Calculate the rate of change of $f: x \mapsto \sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}}$ at $x=8$.


  10. solution
    $\begin{aligned}
    f(x) &=\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}\\\\
    &=x^{\frac{1}{3}}+x^{-\frac{1}{3}} \\\\
    f^{\prime}(x)&=\frac{1}{3} x^{-\frac{2}{3}}-\frac{1}{3} x^{-\frac{4}{3}}\\\\
    &=\frac{1}{3}\left[\frac{1}{x^{\frac{2}{3}}}-\frac{1}{x^{\frac{4}{3}}}\right] \\\\
    f^{\prime}(8)&=\frac{1}{3}\left[\frac{1}{8^{\frac{2}{3}}}-\frac{1}{8^{\frac{4}{3}}}\right]\\\\
    &=\frac{1}{3}\left[\frac{1}{4}-\frac{1}{16}\right]\\\\
    &=\frac{1}{3}\left[\frac{4-1}{16}\right]\\\\
    &=\frac{1}{16}
    \end{aligned}$

  11. Given that $A=2 r^{2}-4 r+5$, find the rate of change of $A$ with respect to $r$ when $r=3$.


  12. solution
    $\begin{aligned}
    A&=2 r^{2}-4 r+5\\\\
    \frac{d A}{d r}&=4 r-4\\\\&=4(r-1) \\\\
    \left.\frac{d A}{d r}\right|_{r=3}&=4(3-1)\\\\&=8
    \end{aligned}$

  13. Given that $V=\dfrac{4}{3} r^{3}-\dfrac{3}{4} r^{2}+r-5$, find the rate of change of $V$ with respect to $r$ when $r=2$.


  14. solution
    $\begin{aligned}
    V&=\frac{4}{3} r^{3}-\frac{3}{4} r^{2}+r-5 \\\\
    \frac{d V}{d r}&=4 r^{2}-\frac{3}{2} r+1 \\\\
    \left.\frac{d V}{d r}\right|_{r=2}&=4(2)^{2}-\frac{3}{2}(2)+1\\\\&=16-3+1\\\\&=14
    \end{aligned}$

  15. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height (in feet) after $t$ seconds is given by $y=40 t-16 t^{2}$. Find the velocity when $t=2$.

  16. solution
    $y=40 t-16 t^{2}\\\\ $


    Let the velocity of the ball be v.


    Since velocity is the rate of change of displacement with respect to time,


    \begin{aligned}
    &\\\\
    v&=\frac{d y}{d t}\\\\&=40-32 t \\\\
    \text { When } t&=2,\\\\
    v&=\left.\frac{d y}{d t}\right|_{t=2}\\\\
    &=40-32(2)\\\\&=-24 \mathrm{ft} / \mathrm{s}\\\\
    \end{aligned}

    After $t$ seconds, the ball is falling down with a velocity of $24 \mathrm{ft} / \mathrm{s}$.

  17. The displacement (in meters) of a particle moving in a straight line is given by the equation of motion $s=\dfrac{1}{t^{2}}$, where $t$ is measured in seconds. Find the velocity of the particle at times $t=a, t=1, t=2$, and $t=3$.


  18. solution
    $s=\dfrac{1}{t^{2}}\\\\ $


    Let the velocity of the particle be $v$.


    Since velocity is the rate of change of displacement with respect to time,


    $\begin{aligned}
    &\\\\
    v=\dfrac{d s}{d t}=-\dfrac{2}{t^{3}}\\\\
    \end{aligned}$

    When $t=a, v=\left.\dfrac{d s}{d t}\right|_{t=a}=-\dfrac{2}{a^{3}} \mathrm{~m} / \mathrm{s}\\\\ $

    When $t=1, v=\left.\dfrac{d s}{d t}\right|_{t=1}=-\dfrac{2}{1^{3}}=-2 \mathrm{~m} / \mathrm{s}\\\\ $

    When $t=2, v=\left.\dfrac{d s}{d t}\right|_{t=2}=-\dfrac{2}{2^{3}}=-0.5 \mathrm{~m} / \mathrm{s}\\\\ $

    When $t=3, v=\left.\dfrac{d s}{d t}\right|_{t=3}=-\dfrac{2}{3^{3}}=-0.074 \mathrm{~m} / \mathrm{s}\\\\ $


  19. The position of a stone thrown from a bridge is given by $s=10 t-16 t^{2}$ feet
    (below the bridge) after $t$ seconds.


    (a) What is the average velocity of the stone between $t_{1}=1$ and $t_{2}=5$ seconds?


    (b) What is the instantaneous velocity of the stone at $t=1$ second.




  20. solution
    $s=10 t-16 t^{2}\\\\ $


    When $t_{1}=1, s_{1}=10-16=-6 \mathrm{ft}\\\\ $


    When $t_{2}=5, s_{2}=10(5)-16(5)^{2}=-350 \mathrm{ft}\\\\ $


    $\therefore \delta s=-350-(-6)=-344 \mathrm{ft}$ and $\delta t=5-1=4 \text{seconds}\\\\ $


    $\therefore$ Average velocity $=\frac{\delta s}{\delta t}=-\frac{344}{4}=-86 \mathrm{ft} / \mathrm{s}\\\\ $


    $v=\frac{d s}{d t}=10-\left.32 t \Rightarrow \frac{d s}{d t}\right|_{t=1}=10-32=-22 \mathrm{ft} / \mathrm{s}\\\\ $


    $\therefore$ Instantaneous velocity of the stone at $t=1$ second is $-22 \mathrm{~ft} / \mathrm{s}\\\\ $


    The negative sign of the velocity means that the stone is decelerating.

  21. The displacement (in metre) of a particle moving in a straight line is given by
    $s=t^{4}-4 t^{3}-20 t^{2}+20 t, t \geq 0$ where $t$ is measured in seconds.


    (a) At what time does the particle have a velocity of $20 \mathrm{~m} / \mathrm{s}$ ?


    (b) At what time is the acceleration 0 ?




  22. solution
    $s=t^{4}-4 t^{3}-20 t^{2}+20 t\\\\ $


    Let the velocity of and acceleration of the particle be $v$ and $a$ respectively.


    Since velocity is the rate of change of displacement and acceleration is the rate of
    change of velocity with respect to time,


    $\begin{aligned}
    v&=\frac{d s}{d t}\\\\
    &=4 t^{3}-12 t^{2}-40 t+20\\\\
    &=4\left(t^{3}-3 t^{2}-10 t+5\right) \mathrm{m} / \mathrm{s} \\\\
    a&=\frac{d v}{d t}\\\\
    &=12 t^{2}-24 t-40\\\\
    &=4\left(3 t^{2}-6 t-10\right) \mathrm{m} / \mathrm{s}^{2} \\\\
    \end{aligned}$

    $\begin{aligned}
    \text { When } v=20 \mathrm{~m} / \mathrm{s},\quad\quad & \\\\
    4\left(t^{3}-3 t^{2}-10 t+5\right)&=20 \\\\
    \therefore t^{3}-3 t^{2}-10 t&=0 \\\\
    t\left(t^{2}-3 t-10\right)&=0\\\\
    t(t-5)(t+2)&=0 \\\\
    \therefore\quad t=0 \text { or } t&=5(t \geq 0) \\\\
    \text { When } a&=0,\\\\
    4\left(3 t^{2}-6 t-10\right)&=0 \\\\
    \therefore 3 t^{2}-6 t-10&=0 \\\\
    t^{2}-2 t&=\frac{10}{3} \\\\
    t^{2}-2 t+1&=\frac{13}{3} \\\\
    \therefore(t-1)^{2}&=\frac{13}{3} \\\\
    t-1&=2.082\\\\
    t&=3.082 \text { seconds }
    \end{aligned}$

  23. When a marble is moving in a groove, the distance $s$ centimetres from one end at time $t$ second is given by $s=5 t-t^{2}$. Find the speed of marble at $t=2$.
    Find $t$ when the speed of marble is zero.


  24. solution
    $s=5 t-t^{2}\\\\ $



    Let the speed of the marble be $v$.



    $\begin{aligned}
    &\\\\
    v&=\frac{d s}{d t}\\\\
    &=5-2 t\\\\
    \text { When } t&=2,\\\\
    \left.\frac{d s}{d t}\right|_{t=2}&=5-2(2)\\\\
    &=1 \mathrm{~cm} / \mathrm{s} \\\\
    \text { When } v&=0,\\\\
    5-2 t&=0 \\\\
    \therefore t&=2.5 \text { seconds }
    \end{aligned}$

Post a Comment for "Calculus Exercise (3) : Rate of Change "

Sponsored by: iklanvideo.io