Skip to content Skip to sidebar Skip to footer

Infinite Sum of Geometric Series : Part (2)







Infinite Geometric Series



A geometric series with infinite number of terms is called an infinite geometric series.






Geometric Progression တစ်ခု၏ $n$ terms အထိ ပေါင်းလဒ်ကို



$S_n= \dfrac{a(1-r^n)}{1-r}$



ဟုသိရှိခဲ့ပြီး ဖြစ်သည်။ ညီမျှခြင်းကို အောက်ပါအတိုင်း အကျယ်ဖြန့်ကြည့်ပါမည်။



$\begin{aligned}
S_n&= \dfrac{a(1-r^n)}{1-r}\\\\
&= \dfrac{a-ar^n}{1-r}\\\\
&= \dfrac{a}{1-r}-\dfrac{ar^n}{1-r}\\\\
\end{aligned}$



Case I.
$|r|>1 \text{ i.e., } r<-1 \text{ or } r>1,$
$(\text{ e.g., } a=2, r=2)$








$\begin{aligned}
S_n &= \dfrac{2}{1-2}-\dfrac{2\times2^n}{1-2}\\\\
&= -2+2\times2^n\\\\
&= 2(2^n - 1)\\\\
\end{aligned}$



$\begin{array}{|r|r|}
\hline
n\hspace{.2cm} & S_n\hspace{4cm} \\ \hline
1 & 2 \\ \hline
5 & 62 \\ \hline
10 & 2046 \\ \hline
50 & 2251799813685246 \\ \hline
100 & 2535301200456458802993406410750 \\ \hline
\end{array}$





ထိုအခါ $n$ ၏ တန်ဖိုးကြီးလာသည်နှင့် အမျှ $S_n$ ၏ ပမာဏ (magnitude) သည်လည်း ကြီးလာပါမည်။



$n\rightarrow \infty$ ($n$ သည် အနန္တပမာဏသို့ ချဉ်းကပ်သွားသည်)



$S_n\rightarrow \infty$ ($S_n$ သည်လည်း အနန္တပမာဏသို့ ချဉ်းကပ်သွားသည်)



ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မဖြစ်နိုင်တော့ပါ။



ထိုအခြေအနေကို divergent condition ဟုခေါ်သည်။ Divergent Condition တွင် Infinite Sum (အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်)
ကို ရှာ၍မရနိုင်ပါ။





Key Point



If $|r|>1$, the geometric series is divergent, and Sum to Infinity doesn't exist.





Case II.
$|r|=1 \text{ i.e., } r=\pm 1$





အကယ်၍ $r=1$ ဖြစ်လျှင်



$S_n = a + a + a + \dots$ to $n$ terms = $na$



ထိုအခါ $n$ ၏ တန်ဖိုးကြီးလာသည်နှင့် အမျှ $S_n$ ၏ ပမာဏ (magnitude) သည်လည်း ကြီးလာပါဦးမည်။



ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မဖြစ်နိုင်တော့ပါ။



အကယ်၍ $r=-1$ ဖြစ်လျှင်



$S_n = a - a + a -a + a - \dots$ to $n$ terms = $a \text { if } n \text { is odd}$



$S_n = a - a + a -a + a - \dots$ to $n$ terms = $0 \text { if } n \text { is even}$



ထို့ကြောင့် အနန္တကိန်းလုံးအရေအတွက်ထိ ပေါင်းလဒ်ကို ရှာယူရန် မလိုတော့ပါ။






Key Point



If $|r|=1$,the geometric series is also a type of divergent series and Sum to Infinity doesn't exist.





Case III.
$|r|<1 \text{ i.e., } -1< r < 1 $
$ (\text{ e.g., } a=2, r=\dfrac{1}{2})$







$\begin{aligned}
S_n &= \dfrac{2}{1-1/2}-\dfrac{2\times(1/2)^n}{1-1/2}\\\\
&= 4-4{\left( {\dfrac{1}{2}} \right)}^{n}\\\\
&= 4\left[ {1-{{{\left( {\dfrac{1}{2}} \right)}}^{n}}} \right]\\\\
\end{aligned}$



$\begin{array}{|r|l|r|}
\hline
n\hspace{.2cm} & \hspace{1.5cm}r^n & S_n\hspace{2.5cm} \\ \hline
1 & 0.5 & 2 \\ \hline
2 & 0.25 & 3 \\ \hline
3 & 0.125 & 3.5 \\ \hline
4 & 0.0525 & 3.75 \\ \hline
5 & 0.03125 & 3.875 \\ \hline
10 & 0.0009765625 & 3.9960937500000000000 \\ \hline
50 & 8.88\times 10^{-16}\approx 0 & 3.9999999999999964473 \\ \hline
100 & 7.88\times 10^{-31}\approx 0 & 4.0000000000000000000 \\ \hline
1000 & 9.33\times 10^{-32}\approx 0 & 4.0000000000000000000 \\ \hline
\end{array}$






ထိုအခါ $n$ ၏ တန်ဖိုးကြီးလာသည်နှင့် အမျှ $S_n$ ၏ ပမာဏ (magnitude) သည် တန်ဖိုးတစ်ခုတွင် မပြောင်းလဲတော့ဘဲ ကိန်းသေ ဖြစ်လာပါသည်။



$|r|< 1$ အတွက် $n\rightarrow \infty$ ဖြစ်သည့်အခါ $S_n$ သည် တန်ဖိုးတစ်ခုတွင် မပြောင်းမလဲ တည်ရှိနေသည်။ အဆိုပါတန်ဖိုးမှာ

limit of $S_n$ as $n$ approaches $\infty$ ပင် ဖြစ်သည်။





$\begin{aligned}
\lim _{n \rightarrow \infty} S_{n} &=\lim _{n \rightarrow \infty}\left(\dfrac{a}{1-r}-\dfrac{a r^{n}}{1-r}\right) \\
&=\dfrac{a}{1-r} \times \lim _{n \rightarrow \infty}\left(1-r^{n}\right) \\
&=\dfrac{a}{1-r}(1-0) \quad(\because\ |r|<1)\\
&=\dfrac{a}{1-r}
\end{aligned}$



အထက်ဖေါ်ပြပါ geometric series အမျိုးအစားကို convergent series ဟုခေါ်ပြီး Converget Geometric Series တစ်ခုတွင် infinite
sum (Sum to infinity) ရှိသည်ဟု မှတ်ယူရမည်။ Sum to Infinity ကို သင်္ကေတအားဖြင့် $(S)$ ဟုသတ်မှတ်သည်။





Key Point



If $|r|<1$,the geometric series is convergent series and Sum to Infinity exists. The sum to infinity
of a convergent geometric series is denoted by $S$.




$\begin{array}{|l|}
\hline
S=\dfrac{a}{1-r}\\
\hline
\end{array}$






Exercises





  1. A geometric progression is defined by $u_{n}=\dfrac{1}{3^{n}}$. Find $S_{n}$ and the smallest value of $n$ for which the sum of the first $n$ terms and the sum to infinity differ by less than $\dfrac{1}{100}$.





    solution
    $\begin{aligned}
    u_{n} &=\dfrac{1}{3^{n}} \\\\
    u_{1} &=\dfrac{1}{3} \\\\
    u_{2} &=\dfrac{1}{9} \\\\
    \therefore a &=\dfrac{1}{3} \\\\
    r=\dfrac{1 / 9}{1 / 3} &=\dfrac{1}{3} \\\\
    \end{aligned}$

    $\begin{aligned}
    S_{n} &=\dfrac{a\left(1-r^{n}\right)}{1-r} \\\\
    &=\dfrac{1 / 3\left(1-\left(\dfrac{1}{3}\right)^{n}\right)}{1-\dfrac{1}{3}} \\\\
    &=\dfrac{1}{2}\left(1-\left(\dfrac{1}{3}\right)^{n}\right)\\\\
    S &=\dfrac{a}{1-r} \\\\
    &=\dfrac{\dfrac{1}{3}}{1-\dfrac{1}{3}} \\\\
    &=\dfrac{1}{2} \\\\
    \end{aligned}$

    $\begin{aligned}
    &S -S_{n} <\dfrac{1}{1000} \\\\
    &\dfrac{1}{2} -\dfrac{1}{2}\left(1-\left(\dfrac{1}{3}\right)^{n}\right) < \dfrac{1}{1000} \\\\
    &\dfrac{1}{2}\left(\dfrac{1}{3}\right)^{n} <\dfrac{1}{1000}\\\\
    &\left(\dfrac{1}{3}\right)^{n} <\dfrac{1}{500} \\\\
    &3^{n} >500 \\\\
    &n >\dfrac{\ln 500}{\ln 3} \\\\
    &n >5.66\\\\
    \end{aligned}$


    The smallest value of $n=6$.


  2. Find the smallest value of $n$ for which the sum to $\mathrm{n}$ terms and the sum to infinity of a G.P.
    $1, \dfrac{1}{5}, \dfrac{1}{25}, \ldots$ differ by less than $\dfrac{1}{1000}$.





    solution
    $\begin{aligned}
    1, \dfrac{1}{5},& \dfrac{1}{25}, \ldots \text { is a G.P. } \\\\
    \therefore a &=1 \\\\
    r &=\dfrac{1}{5} \\\\
    S &=\dfrac{a}{1-r} \\\\
    &=\dfrac{1}{1-\dfrac{1}{5}} \\\\
    &=\dfrac{5}{4}\\\\
    S_{n} &=\dfrac{a\left(1-r^{n}\right)}{1-r} \\\\
    &=\dfrac{a}{1-r}\left(1-r^{n}\right) \\\\
    &=\dfrac{5}{4}\left(1-\left(\dfrac{1}{5}\right)\right)^{n} \\\\
    &=\dfrac{5}{4}-\dfrac{5}{4}\left(\dfrac{1}{5}\right)^{n}\\\\
    \end{aligned}$


    $\begin{aligned}
    S-S_{n} & <\dfrac{1}{1000} \\\\
    \dfrac{5}{4}\left(\dfrac{1}{5}\right)^{n} & < \dfrac{1}{1000} \\\\
    \left(\dfrac{1}{5}\right)^{n} & <\dfrac{1}{1250} \\\\
    5^{n} &>1250 \\\\
    n &>\dfrac{\ln 1250}{\ln 5} \\\\
    n &>4.43\\\\
    \end{aligned}$



  3. The first three terms of a geometric progression are $3(q+5), 3(q+3)$ and $(q+7)$ respectively.
    Calculate the possible values of $q$. For each possible value of $q$ find the common ratio and
    the sum to infinity of the geometric progression.
    solution
    $3(q+5), 3(q+3),(q+7)$ are the first three terms of a G.P.


    $\begin{aligned}
    &\\
    &\therefore \dfrac{q+3}{q+5}=\dfrac{q+7}{3(q+3)} \\\\
    &3\left(q^{2}+6 q+9\right)=q^{2}+12 q+35 \\\\
    &2 q^{2}+6 q-8=0 \\\\
    &q^{2}+3 q-4=0 \\\\
    &(q+4)(q-1)=0\\\\
    &\therefore q=-4 \text{ or } q=1\\\\
    &\text{When } q=-4\\\\
    &a=u_{1}=3(-4+5)=3 \\\\
    &r=\dfrac{q+3}{q+5}=\dfrac{-4+3}{-4+5}=-1 \\\\
    &|r|=1\\\\
    \end{aligned}$


    $\therefore$ Sum to infinity does not exist.



    $\begin{aligned}
    &\\
    &\text{When } q=1\\\\
    &a=u_{1}=3(1+5)=18 \\\\
    &r=\dfrac{q+3}{q+5}=\dfrac{1+3}{1+5}=\dfrac{2}{3}<1\\\\
    \end{aligned}$


    $\therefore$ Sum to infinity exists.


    $\begin{aligned}
    &\\
    S &=\dfrac{a}{1-r} \\\\
    &=\dfrac{18}{1-\dfrac{2}{3}} \\\\
    &=54
    \end{aligned}$



  4. A geometric progression has first term $1$ and common ratio $r$. A second geometric progression has
    first term $4$ and common ratio $\dfrac{r}{4}$. The two progressions have the same sum to infinity, $S$.
    Find the values of $r$ and $S$.






    solution
    $\begin{aligned}
    \text{For } 1^{\text{st}} \text{ G.P,}&\\\\
    \text{first term } &=7\\\\
    \text{common ratio } &=r,\quad |r| < 1\\\\
    S&=\dfrac{1}{1-r}\\\\
    \text{For } 2^{\text{nd}} \text{ G.P,}&\\\\
    \text{first term } &=7\\\\
    \text{common ratio } &=\dfrac{r}{4}\\\\
    S &=\dfrac{4}{1-\dfrac{r}{4}}\\\\
    \end{aligned}$


    By the problem,


    $\begin{aligned}
    &\\
    \dfrac{1}{1-r} &=\dfrac{4}{1-\dfrac{r}{4}} \\\\
    1-\dfrac{r}{4} &=4-4 r \\\\
    4-r &=16-16 r \\\\
    15 r &=12 \\\\
    r &=\dfrac{4}{5} \\\\
    \therefore S &=\dfrac{1}{1-\dfrac{4}{5}} \\\\
    &=5
    \end{aligned}$

  5. A geometric progression, in which all the terms are positive, has common ratio $r$.
    The sum of the first $n$ terms is less than $90 \%$ of the sum to infinity. Show that $r^{n}>0.1$.
    solution
    $\begin{aligned}
    &\text{In a G.P,}\\\\
    &\text{ all terms are positive.}\\\\
    &\therefore\ a>0\\\\
    &\text{common ratio } =r\\\\
    & S_{n} < 90 \% \text{ of } S\\\\
    & S_{n}<0.9S\\\\
    &\dfrac{a\left(1-r^{n}\right)}{1-r} < 0.9 \times \dfrac{a}{1-r}\\\\
    &\therefore\ 1-r^{n} < 0.9 \\\\
    & r^{n} >1-0.9 \\\\
    & r^{n} >0.1
    \end{aligned}$

  6. In an infinite G.P, each term is equal to three times the sum of all the terms that follow it.
    The sum of the first two terms is $15$ . Find the sum of the series to infinity.






    solution
    $\begin{aligned}
    &a=3\left(u_{2}+u_{3}+u_{4}+\cdots\right) \\\\
    &a=3(S-a) \\\\
    &a=3 S-3 a \\\\
    &4 a=3 S \\\\
    &4 a=\dfrac{3 a}{1-r} \\\\
    &1-r=\dfrac{3}{4} \\\\
    &r=\dfrac{1}{4}\\\\
    \end{aligned}$

    $\begin{aligned}
    u_{1}+u_{2} &=15 \\\\
    a+a r &=15 \\\\
    a(1+r) &=15 \\\\
    a\left(1+\dfrac{1}{4}\right) &=15 \\\\
    \dfrac{5 a}{4} &=15 \\\\
    a &=12 \\\\
    S &=\dfrac{a}{1-r} \\\\
    &=\dfrac{12}{1-\dfrac{1}{4}} \\\\
    &=16
    \end{aligned}$


  7. Let $x=1+a+a^{2}+\ldots$ and $y=1+b+b^{2}+\ldots$, where $|a|<1$ and $|b|< 1$. Prove that
    $1+a b+a^{2} b^{2}+\ldots=\dfrac{x y}{x+y-1}$.



    solution
    $x=1+a+a^{2}+\cdots,\quad |a|< 1\\\\ $


    Given terms are in G.P. with ist term $=1$ and the common ratio $=a$


    $\begin{aligned}
    &\\
    &\therefore x=\dfrac{1}{1-a} \\\\
    &y=1+b+b^{2}+\cdots,\quad |b|<1\\\\
    \end{aligned}$



    Given terms are in G.P. with ist term $=1$ and the common ratio $=b$


    $\begin{aligned}
    &\\
    \therefore y=\dfrac{1}{1-b}\\\\
    \end{aligned}$


    Let $S=1+a b+a^{2} b^{2}+\cdots\\\\ $


    The terms are also in G.P., with first term $=1$ and common ratio $=a b$.


    $\begin{aligned}
    &\\
    \therefore\ S&=\dfrac{1}{1-a b}\\\\
    x y &=\dfrac{1}{1-a} \cdot \dfrac{1}{1-b} \\\\
    &=\dfrac{1}{1-a-b+a b} \\\\
    x+y-1 &=\dfrac{1}{1-a}+\dfrac{1}{1-b}-1 \\\\
    &=\dfrac{1-b+1-a-1+a+b-a b}{1-a-b+a b} \\\\
    &=\dfrac{1-a b}{1-a-b+a b}\\\\
    \dfrac{x y}{x+y-1} &=\dfrac{1}{1-a b} \\\\
    &=S\\\\
    \end{aligned}$


    Hence, proved.


  8. The sum of an infinite geometric series is $15$ and the sum of the squares of the terms
    to infinity is $45$ . Find the first term and the common ratio.





    solution
    Let $ u_{1}=a $ and common ratio $=r$


    $\begin{aligned}
    &\\
    \therefore\ a+a r+a r^{2}+\cdots&=15 \\\\
    \therefore\ \dfrac{a}{1-r}&=15 \\\\
    \therefore a&=15(1-r) \\\\
    a+a^{2} r^{2}+a^{2} r^{4}&=45 \\\\
    \therefore\ \dfrac{a^{2}}{1-r^{2}}&=45 \\\\
    \dfrac{15^{2}(1-r)^{2}}{1-r^{2}}&=45 \\\\
    \dfrac{\left(1-r^{2}\right)}{(1-r)(1+r)}&=\dfrac{1}{5}\\\\
    \therefore\ \dfrac{1-r}{1+r} &=\dfrac{1}{5} \\\\
    1+r &=5-5 r \\\\
    6 r &=4 \\\\
    r &=\dfrac{2}{3} \\\\
    \therefore\ a &=15\left(1-\dfrac{2}{3}\right) \\\\
    &=5
    \end{aligned}$


  9. Express the values of $x$ for which the sum to infinity of an infinite geometric series
    $\dfrac{1}{1+x}+\dfrac{1}{(1+x)^{2}}+\dfrac{1}{(1+x)^{3}}+\ldots$ exists. Hence find the general
    expression for the sum to infinity for this range of $x$.





    solution
    $\begin{aligned}
    \dfrac{1}{1+x}, & \dfrac{1}{(1+x)^{2}}, \dfrac{1}{(1+x)^{3}}, \ldots \text { is a G.P. } \\\\
    \therefore\ a &=\dfrac{1}{1+x} \\\\
    &r=\dfrac{\dfrac{1}{(1+x)^{2}}}{\dfrac{1}{1+x}}=\dfrac{1}{1+x}, x \neq-1\\\\
    \end{aligned}$


    Since the sum to infinity exists,


    $\begin{aligned}
    &\\
    |r| & < 1 \\\\
    \left|\dfrac{1}{1+x}\right| & <1 \\\\
    |1+x| &>1\\\\
    1+ x & <-1 \text { or } 1+x>1 \\\\
    x & <-2 \text { or } x>0 \\\\
    S&= \dfrac{a}{1-r} \\\\
    &= \dfrac{\dfrac{1}{1+x}}{1-\dfrac{1}{1+x}} \\\\
    &= \dfrac{1}{1+x} \times \dfrac{1+x}{1+x-1} \\\\
    &= \dfrac{1}{x} \text { for }\{x \mid x <-2 \text { or } x>0\}
    \end{aligned}$


  10. If $b=a+a^{2}+a^{3}+\ldots$ where $|a|<1$, prove that $a=\dfrac{b}{1+b}$.





    solution
    $\begin{aligned}
    &b=a+a^{2}+a^{3}+\cdots \text { where }|a| < 1 \\\\
    &a, a^{2}, a^{3}, \ldots \text { is a G.P. } \\\\
    &\text { st term }=a \\\\
    &\text { common ratio }=a \\\\
    &\text { Since }|a|<1, \\\\
    &\text {Sum to infinity exists.}\\\\
    &\therefore\ S=\dfrac{a}{1-r}=\frac{a}{1-a}\\\\
    \end{aligned}$


    By the problem,


    $\begin{aligned}
    &\\
    S &=b \\\\
    \dfrac{a}{1-a} &=b \\\\
    a &=b-a b \\\\
    a+a b &=b \\\\
    a(1+b) &=b \\\\
    \therefore\ a &=\dfrac{b}{1+b}
    \end{aligned}$

  11. The sum of infinite terms of a G.P. is $x$ and on squaring each term of it, the sum will be $y$,
    find the common ratio in terms of $x$ and $y$.

    solution

    $\begin{aligned}
    &\text{Let the given G.P. be}\\\\
    &a, a r, a r^{2}, \ldots \text { where }|r| < 1. \\\\
    &\therefore\ x=\dfrac{a}{1-r} \\\\
    &\therefore\ a=x(1-r)\\\\
    &\text{Squaring each terms of given G.P.,}\\\\
    &a^{2}, a^{2} r^{2}, a^{2}+\ldots\\\\
    \end{aligned}$


    $\therefore$ It is also a GP with common ratio $=r^{2}$.


    $\begin{aligned}
    &\\
    \therefore\ y &=\dfrac{a^{2}}{1-r^{2}} \\\\
    y &=\dfrac{x^{2}(1-r)^{2}}{(1-r)(1+r)} \\\\
    \therefore\ y(1+r) &=x^{2}(1-r) \\\\
    y+y r &=x^{2}-x^{2} r \\\\
    x^{2} r+y r &=x^{2}-y \\\\
    r\left(x^{2}+y\right) &=x^{2}-y \\\\
    \therefore\ r &=\dfrac{x^{2}-y}{x^{2}+y}
    \end{aligned}$

  12. If $S_{1}, S_{2}, S_{3}, \ldots, S_{p}$ are the sums to infinity of geometric series whose
    first terms are $1,2,3, \ldots, p$ and whose common ratios are $\dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{4}, \ldots, \dfrac{1}{p+1}$ respectively,
    show that $S_{1}+S_{2}+S_{3}+\ldots+S_{p}=\dfrac{p(p+3)}{2}$.



    solution
    $\begin{aligned}
    &S_{1}=\dfrac{1}{1-\dfrac{1}{2}}=2 \\\\
    &S_{2}=\dfrac{2}{1-\dfrac{1}{3}}=3 \\\\
    &S_{3}=\dfrac{3}{1-\dfrac{1}{4}}=4 \\\\
    &\vdots \qquad \qquad \vdots \\\\
    &S_{p}=\dfrac{p}{1-\dfrac{1}{p+1}}=p+1\\\\
    &\therefore\ S_{1}+S_{2}+S_{3}+\cdots+S_{p}=2+3+4+\cdots+(p+1)\\\\
    \end{aligned}$


    The terms are in an A.P., with first term $=2$, common difference $=1$.


    $\begin{aligned}
    &\\
    \therefore S_{1}+S_{2}+S_{3}+\cdots+S_{p} &=\dfrac{p}{2}(2(2)+(p-1) 1) \\\\
    &=\dfrac{p}{2}(4+p-1) \\\\
    &=\dfrac{p(p+3)}{2}\\\\
    \end{aligned}$

  13. A geometric progression has the first term 2 and common ratio $0.95$. Calculate the least value
    of $n$ for which $S-S_{n}< 1$.





    solution
    $\begin{aligned}
    &\text{In a G.P.,}\\\\
    &a=2 \\\\
    &r=0.95 \\\\
    &S-S_{n}<1 \\\\
    &\dfrac{a}{1-r}-\dfrac{a\left(1-r^{n}\right)}{1-r}<1 \\\\
    &\dfrac{a}{1-r}\left(1-1+r^{n}\right)<1\\\\
    &\dfrac{2}{1-0.95}(0.95)^{n}<1 \\\\
    &\dfrac{2}{0.05}(0.95)^{n}<1 \\\\
    &(0.95)^{n}<0.025 \\\\
    &n>\dfrac{\ln 0.025}{\ln 0.95} \\\\
    &n>71.92\\\\
    \end{aligned}$


    $\therefore$ The smallest value of $n=72$.

  14. In an infinite G.P., if the first term is equal to the twice of the sum of the remaining terms,
    find the common ratio.



    solution
    $\begin{aligned}
    \text{In } & \text{ a G.P.} \\\\
    a&= 2\left(u_{2}+u_{3}+u_{4}+\cdots\right) \\\\
    a&= 2(S-a) \\\\
    a&= 2 S-2 a \\\\
    3 a&= 2 S \\\\
    3 a&= \dfrac{2 a}{1-r} \\\\

  15. If the sum to infinity of an infinite geometric progression is twice the first term and the
    fifth term is $\dfrac{1}{16}$, find the sum of the first five terms of that G.P.




    solution
    $\begin{aligned}
    \text{In } & \text{ a G.P.}, \\\\
    S &=2 a \\\\
    \therefore\ \dfrac{a}{1-r}&=2 a \\\\
    1-r & =\dfrac{1}{2} \\\\
    r & =\dfrac{1}{2} \\\\
    u_{5} & =\dfrac{1}{16} \\\\
    a r^{4} & =\dfrac{1}{16}\\\\
    a\left(\dfrac{1}{2}\right)^{4} &=\dfrac{1}{16} \\\\
    \therefore\ a &=1 \\\\
    \therefore\ S_{5} &=\dfrac{a\left(1-r^{5}\right)}{1-r} \\\\
    &=\dfrac{1\left(1-\left(\dfrac{1}{2}\right)^{5}\right)}{1-\dfrac{1}{2}} \\\\
    &=2\left(1-\dfrac{1}{32}\right) \\\\
    &=\dfrac{31}{16}
    \end{aligned}$





Post a Comment for "Infinite Sum of Geometric Series : Part (2)"

Sponsored by: iklanvideo.io