Skip to content Skip to sidebar Skip to footer

Geometric Progression : Problems and Solutions -Part (2)






Definition: Geometric Progression


A geometric progression is a sequence in which the ratio of each term to the one before it, is a constant.




ကိန်းစဉ်တစ်ခု၏ နီးစပ် (ကပ်လျက်) ကိန်းနှစ်လုံး (နောက်ကိန်းနှင့် ရှေ့ကိန်း)၏ အချိုးသည် ကိန်းသေဖြစ်လျှင် ၎င်းကိန်းစဉ်ကို
geometric progression ဟုခေါ်သည်။



This ratio is called the common ratio and is denoted by $r$.




If $u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}, u_{n}$ is an G.P.,
then $\dfrac{u_{2}}{u_{1}}=\dfrac{u_{3}}{u_{2}}=\ldots=\dfrac{u_{n}}{u_{n-1}}=$ constant.



$\dfrac{u_{n}}{u_{n-1}}=r$ and $u_{n}=u_{n-1} \cdot r$ where $r$ is called the common ratio.



If the first term is $a$, the the sequence may be $a, ar, ar^2, ar^3, \ldots$.



Hence the $n^{\text{th}}$ term is,





$\begin{array}{|l|}\hline
u_n = ar^{n-1}\\
\hline
\end{array}$








Definition: Geometric Mean (G.M.)


In a finite geometric progression, the terms between the first term and the last term are called the geometric means.




အဆုံးရှိ geometric progression တစ်ခု၏ ရှေ့ဆုံးကိန်းနှင့် နောက်ဆုံးကိန်းကြားရှိ ကိန်းများအားလုံးကို geonetric means (G.M) ဟုခေါ်သည်။



If $u_{1}, u_{2}, u_{3}, \ldots u_{n-1}, u_{n}$ is an G.P., then



$u_{2}, u_{3}, \ldots, u_{n-1}$ are called geometric means.



The geometric mean between two numbers $x$ and $y$ is given by





$\begin{array}{|l|}\hline
\text{G.M } = \sqrt{xy}\\
\hline
\end{array}$






Exercises



  1. If $x, y, z$ are in G.P., prove that $\log x, \log y, \log z$ are in A.P.

  2. Solution $x, y, z$ ane in G.P.
    $\begin{aligned}
    &\\
    \therefore \dfrac{y}{x}&=\dfrac{z}{y} \\\\
    \log \left(\dfrac{y}{x}\right)&=\log \left(\dfrac{z}{y}\right) \\\\
    \log y-\log x&=\log z-\log y\\\\
    \end{aligned}$



    $\therefore \quad \log x, \log y, \log z$ are in A.P.

  3. If the $n^{\text {th }}$ term of the G.P. $5,10,20, \ldots$ is equal to the $n^{\text {th }}$
    term of the G.P. $1280,640,320, \ldots$, find the value of $n$.

  4. SOLUTION $\begin{aligned}
    5,10,20, \ldots \text { is a G.P. }& \\\\
    a &=5 \\\\
    r &=\dfrac{10}{5}=2 . \\\\
    u_{n} &=a r^{n-1} \\\\
    &=5(2)^{n-1} \\\\
    1280,640,320, \ldots \text { is a G.P. } \\\\
    a &=1280 \\\\
    r &=\dfrac{640}{1280}=\dfrac{1}{2}\\\\
    u_{n} &=a r^{n-1} \\\\
    &=1280\left(\dfrac{1}{2}\right)^{n-1} \\\\
    &=1280(2)^{1-n}\\\\
    \text{By the problem,}&\\\\
    5(2)^{n-1} &=1280(2)^{1-n} \\\\
    \therefore \dfrac{2^{n-1}}{2^{1-n}} &=256 \\\\
    2^{2 n-2} &=2^{8} \\\\
    2 n-2 &=8 \\\\
    2 n &=10 \\\\
    n &=5
    \end{aligned}$


  5. Find three numbers in G.P. whose sum is 19 and whose product is $216 .$

  6. SOLUTION Let the three numbers in GP be $a$, ar, $a r^{2}\\\\$.


    By the problem,


    $\begin{aligned}
    &\\
    a+a r+a r^{2}&=19 \\\\
    a\left(1+r+r^{2}\right)&=19\dots(1)\\\\
    a\cdot ar\cdot a r^{2} &=216 \\\\
    a^{3} r^{3} &=6^{3} \\\\
    (a r)^{3} &=6^{3}\\\\
    ar &=6\\\\
    a&=\dfrac{6}{r}\dots(2)\\\\
    \end{aligned}$


    Substituting $a=\dfrac{6}{r}$ in equation (1),


    $\begin{aligned}
    &\\
    \dfrac{6}{r}\left(1+r+r^{2}\right)&=19\\\\
    6+6 r+6 r^{2}&=19 r\\\\
    6 r^{2}-13 r+6&=0\\\\
    (3 r-2)(2 r-3)&=0\\\\
    r=\dfrac{2}{3} \text{ or } r=\dfrac{3}{2}\\\\
    \text{When } r=\dfrac{3}{2},&\\\\
    a=\dfrac{6}{3 / 2}&=4\\\\
    \therefore\ 1^{\text{st}} \text { number } &= 4\\\\
    2^{\text{nd}} \text { number } &= 6\\\\
    3^{\text{rd}} \text { number } &= 9\\\\
    \text{When } r=\dfrac{2}{3},&\\\\
    a=\dfrac{6}{2 / 3}&=9\\\\
    \therefore\ 1^{\text{st}} \text { number } &= 9\\\\
    2^{\text{nd}} \text { number } &= 6\\\\
    3^{\text{rd}} \text { number } &= 4\\\\
    \end{aligned}$

  7. If in a GP the $(p+q)^{\text {th }}$ term is $a$ and the $(p-q)^{\text {th }}$ term is $b$,
    prove that the $p^{\text {th }}$ term is $\sqrt{a b}$.



  8. Solution
    Let the first term and the common ratio of given G.P.
    be $A$ and $R$ respectively.


    By the problem,


    $\begin{aligned}
    &\\
    u_{p+q}&=a \\\\
    A R^{p+q-1}&=a\ldots(1) \\\\
    u_{p-q}&=b\\\\
    A R^{p-q-1} &=b \ldots(2)\\\\
    \text { Miltiply equation (1) } & \text { by equation (2), }\\\\
    A R^{p+q-1} \cdot A R^{p-q-1} &=a b \\\\
    A^{2} R^{2 p-2} &=a b \\\\
    \left(A R^{p-1}\right)^{2} &=a b \\\\
    A R^{p-1} &=\sqrt{a b} \\\\
    \therefore\ u_p &=\sqrt{a b}
    \end{aligned}$




  • The third term of a G.P. is $6 \dfrac{1}{4}$ and the $7^{\text {th }}$ term is
    the reciprocal of the third. Which term of this GP is unity?

  • SOlUTION
    $\begin{aligned}
    \text { In a G.P., }& \\\\
    u_{3}&=6 \dfrac{1}{4} \\\\
    a r^{2}&=\dfrac{25}{4}\ldots(1) \\\\
    u_{7}&=\dfrac{4}{25} \\\\
    a r^{6}&=\dfrac{4}{25}\ldots(2)\\\\
    \therefore \dfrac{a r^{6}}{a r^{2}} &=\dfrac{\frac{4}{25}}{\frac{25}{4}} \\\\
    r^{4} &=\dfrac{16}{625} \\\\
    r &=\dfrac{2}{5} \\\\
    \therefore\ a\left(\dfrac{2}{5}\right)^{2} &=\dfrac{25}{4} \\\\
    \dfrac{4 a}{25} &=\dfrac{25}{4}\\\\
    \therefore\ a &=\dfrac{625}{16} \\\\
    \therefore\ a r^{4} &=\dfrac{625}{16} \times \dfrac{16}{625} \\\\
    \therefore\ u_{5} &=1
    \end{aligned}$

  • If $\dfrac{1}{x+y}, \dfrac{1}{2 y}, \dfrac{1}{y+z}$ are the three consecutive terms of an A.P.,
    prove that $x, y, z$ are the three consecutive terms of a G.P.



  • SOLUTION
    $\dfrac{1}{x+y},\ \dfrac{1}{2 y},\ \dfrac{1}{y+z}$ are in A.P.


    $\begin{aligned}
    &\\
    \dfrac{1}{2 y}-\dfrac{1}{x+y}&=\dfrac{1}{y+z}-\dfrac{1}{2 y} \\\\
    \dfrac{x+y-2 y}{2 y(x+y)}&=\dfrac{2 y-y-z}{2 y(y+z)} \\\\
    \dfrac{x-y}{2 y(x+y)}&=\dfrac{y-z}{2 y(y+z)} \\\\
    \dfrac{x-y}{x+y}&=\dfrac{y-z}{y+z} \\\\
    (x-y)(y+z)&=(x+y)(y-z) \\\\
    x y-y^{2}+x z-y z&=x y+y^{2}-x z-y z \\\\
    x z-y z+x z+y z&=2 y^{2} \\\\
    2 x z&=2 y^{2} \\\\
    y^{2}&=x z\\\\
    \therefore\ \dfrac{y}{x}&=\dfrac{z}{y}\\\\
    \end{aligned}$


    Hence, $x,\ y,\ z$ are in G.P.


  • If $x$ is the A.M. between $a$ and $b$ and $y$ is the A.M. between $b$ and $c$ while
    $a, b, c$ are in G.P., prove that $\dfrac{a}{x}+\dfrac{c}{y}=2$.



  • SOLUTION
    A.M between $a$ and $b=x\\\\$


    $\dfrac{a+b}{2}=x\\\\$


    A.M between $b$ and $c=y\\\\$


    $\dfrac{b+c}{2}=y\\\\$


    $a, b, c$ are in a G.P. $\\ $




    $\dfrac{b}{a}=\dfrac{c}{b} \Rightarrow b^{2}=a c$


    $\begin{aligned}
    &\\
    & \dfrac{a}{x}+\dfrac{c}{y} \\\\
    =& \dfrac{a}{\dfrac{a+b}{2}}+\dfrac{c}{\dfrac{b+c}{2}} \\\\
    =& \dfrac{2 a}{a+b}+\dfrac{2 c}{b+c} \\\\
    =& \dfrac{2(a b+a c+a c+b c)}{a b+a c+b^{2}+b c} \\\\
    =& \dfrac{2\left(a b+2 b^{2}+b c\right)}{a b+2 b^{2}+b c}\left(\because b^{2}=a c\right) \\\\
    =& 2
    \end{aligned}$
  • If the arithmetic mean and geometric mean between the two numbers are $30$ and $18$ respectively,
    find the two numbers



  • SOLUTION
    Let the two numbers be $a$ and $b\\\\ $.


    A.M between $a$ and $b=30\\\\ $


    $\begin{aligned}
    \dfrac{a+b}{2} &=30 \\\\
    a+b &=60 \\\\
    b &=60-a\\\\
    \end{aligned}$


    G.M. between $a$ and $b=18\\\\ $


    $\begin{aligned}
    \sqrt{a b}&=18\\\\
    a b &=324 \\\\
    a(60-a) &=324 \\\\
    60 a-a^{2} &=324 \\\\
    a^{2}-60 a+32 y &=0 \\\\
    (a-6)(a-54) &=0 \\\\
    a=6 \text { or } a &=54\\\\
    \end{aligned}$


    When $a=6, b=60-6=54\\\\ $.


    When $a=54, b=60-54=6\\\\ $.


    $\therefore$ The two numbers are $6$ and $54$.

  • Let $a, b, c$ are three numbers between $2$ and $18$ , such that their sum is $25$.
    If $2, a, b$ are in A.P. and $b, c, 18$ are in G.P., then find $c$.



  • SOLUTION
    $2, a, b$ are in A.P.


    $\begin{aligned}
    &\\
    \therefore a &=\dfrac{2+b}{2} \\\\
    &=1+\dfrac{b}{2}\\\\
    \end{aligned}$


    $b, c, 18$ are in G.P.


    $\begin{aligned}
    &\\
    \dfrac{c}{b} &=\dfrac{18}{c} \\\\
    \therefore b &=\dfrac{c^{2}}{18} \\\\
    \therefore a &=1+\dfrac{c^{2}}{36} \cdot \\\\
    a+b+c &=25 \text { (given) }\\\\
    1+\dfrac{c^{2}}{36}+\dfrac{c^{2}}{18}+c &=24 \\\\
    \dfrac{3 c^{2}}{36}+c &=24 \\\\
    \dfrac{c^{2}}{12}+c &=24 \\\\
    c^{2}+12 c-288 &=0 \\\\
    (c+24)(c-12) &=0 \\\\
    c=-24\ \text { or }\ c &=12\\\\
    \end{aligned}$


    Since $2 < c < 18, c=-24$ is impossible.


    $\begin{aligned}
    &\\
    &\therefore\ c=12
    \end{aligned}$


  • An A.P. has first term $a$ and common difference $d, d \neq 0$.
    If the $3^{\text {rd }}, 4^{\text {th }}$ and $7^{\text {th }}$ terms of this A.P.
    are the first three terms of a G.P., show that $a=-\dfrac{3}{2} d$.
    Hence show that the $4^{\text {th }}$ term of the G.P. is
    the $16^{\text {th }}$ term of the A.P.

  • SOlution
    In an A.P.,


    $\begin{aligned}
    &\\
    a&=\text { first term } \\\\
    d&=\text { common difference } \\\\
    u_{3}&=a+2 d \\\\
    u_{4}&=a+3 d \\\\
    u_{7}&=a+6 d \\\\
    \end{aligned}$


    By the problem,


    $a+2 d, a+3 d, a+6 d$ are in a G.P.


    $\begin{aligned}
    &\\
    \therefore \dfrac{a+3 d}{a+2 d} &=\dfrac{a+6 d}{a+3 d} \\\\
    \therefore a^{2}+6 a d+9 d^{2} &=a^{2}+8 a d+12 d^{2} \\\\
    \therefore \quad-2 a d &=3 d^{2} \\\\
    a &=-\dfrac{3}{2} d\\\\
    \end{aligned}$


    Let the common ratio of G.P. be $r$.


    $\begin{aligned}
    &\\
    \text { then, } r &=\dfrac{a+3 d}{a+2 d} \\\\
    &=\dfrac{-\dfrac{3}{2} d+3 d}{-\dfrac{3}{2} d+2 d} \\\\
    &=3 \\\\
    \therefore\ 4^{\text {th }} \text { term of G.P.} &=3(a+6 d) \\\\
    &=3\left(-\dfrac{3}{2} d+6 d\right) \\\\
    &=\dfrac{27}{2} d\\\\
    16^{\text {th }} \text { term of A.P. } &=a+15 d \\\\
    &=-\dfrac{3}{2} d+15 d \\\\
    &=\dfrac{27}{2} d\\\\
    \end{aligned}$


    Hence, proved.

  • In a set of four numbers, the first three are in G.P. and the last three are in A.P.
    with a common difference 6 . If the first number is the same as the $4^{\text {th }}$,
    find the four numbers.

  • SOLUTION
    Let $A=\{w, x, y, z\}\\\\$


    By the problem,


    $w, x, y$ are in GP.


    $\\ \dfrac{x}{w}=\dfrac{y}{x}\\\\$



    $x, y, z$ are in A.P.


    Let the common difference be $d.\\\\$


    $\begin{aligned}
    \therefore\ x &=x, y=x+6, z=x+12 \\\\
    w &=z(\text { given }) \\\\
    \therefore\ w &=x+12 \\\\
    \dfrac{x}{x+12} &=\dfrac{x+6}{x} \\\\
    x^{2} &=x^{2}+18 x+72 \\\\
    x &=-4 \\\\
    \therefore\ y &=2, z=w=8
    \end{aligned}$

  • If the A.M. between two positive numbers $a$ and $b$, where $a>b$, is twice the G.M.
    between them, prove that $a: b=\left(2+\sqrt{3}\right): \left(2-\sqrt{3}\right)$

  • SOLUTION
    A.M. between $a$ and $b=\dfrac{a+b}{2}\\\\ $


    G.M. between $a$ and $b =\sqrt{a b} \\\\ $


    $\begin{aligned}
    \text{By the problem} &\\\\
    \text{A.M.} &= 2\cdot\text {G.M.}\\\\
    \dfrac{a+b}{2}&=2 \sqrt{a b} \\\\
    a+b&=4 \sqrt{a b} \\\\
    (a+b)^{2}&=16 a b \dots(1)\\\\
    a^{2}+2 a b+b^{2}&=16 a b \\\\
    a^{2}-14 a b+b^{2}&=0\\\\
    a^{2}-2 a b+b^{2}&=12 a b \\\\
    (a-b)^{2}&=12 a b\ldots(2) \\\\
    \text{By } (1)\div (2), &\\\\
    \dfrac{(a+b)^{2}}{(a-b)^{2}}&=\dfrac{16 a b}{12 a b} \\\\
    \left(\dfrac{a+b}{a-b}\right)^{2}&=\dfrac{4}{3}\\\\
    \dfrac{a+b}{a-b}&=\dfrac{2}{\sqrt{3}} \\\\
    2 a-2 b&=\sqrt{3} a+\sqrt{3} b \\\\
    2 a-\sqrt{3} a&=2 b+\sqrt{3} b \\\\
    a(2-\sqrt{3})&=b(2+\sqrt{3}) \\\\
    \therefore \dfrac{a}{b}&=\dfrac{2+\sqrt{3}}{2-\sqrt{3}}
    \end{aligned}$


  • If $A_{1}, A_{2}$ are the two A.M.s between two numbers $a$ and $b$ and
    $G_{1}, G_{2}$ are two G.M.s between the same two numbers, then prove that
    $\dfrac{A_{1}+A_{2}}{G_{1} G_{2}}=\dfrac{a+b}{a b}$.

  • SOLUTION
    $A_{1}, A_{2}$ are the two A.M.s between two numbers $a$ and $b\\\\ $


    $\therefore a, A_{1}, A_{2}, b$ is an A.P.


    $\begin{aligned}
    &\\
    \therefore \quad A_{1}-a &=b_{-} A_{2} \\\\
    A_{1}+A_{2} &=a+b \\\\
    \end{aligned}$


    $G_{1}, G_{2}$ are the two G.M.s between $a$ and $b.\\\\ $


    $a, G_{1}, G_{2}, b$ is a G.P.


    $\begin{aligned}
    \dfrac{G_{1}}{a} &=\dfrac{b}{G_{2}} \\\\
    G_{1} G_{2} &=a b . \\\\
    \therefore \dfrac{A_{1}+A_{2}}{G_{1} G_{2}} &=\dfrac{a+b}{a b}
    \end{aligned}$

  • If $A$ and $G$ be A.M and G.M respectively between two positive numbers.
    Prove that the numbers are $A \pm \sqrt{A^{2}-G^{2}}$

  • SOLUTION
    $\begin{aligned}
    \therefore\ \dfrac{a+b}{2} &=A \\\\
    a+b &=2 A \\\\
    \sqrt{a b} &=G \\\\
    a b &=G^{2} \\\\
    \left(a+b^{2}\right) &=4 A^{2} \\\\
    a^{2}+2 a b+b^{2} &=4 A^{2}\\\\
    a^{2}+b^{2} &=4 A^{2}-2 a b \\\\
    a^{2}+b^{2}-2 a b &=4 A^{2}-4 a b \\\\
    (a-b)^{2} &=4 A^{2}-4 G^{2} \\\\
    a-b &=2 \sqrt{A^{2}-G^{2}} \\\\
    \text{By } (1)+(2), & \\\\
    2 a &=2 A+\sqrt{A^{2}-G^{2}} \\\\
    \therefore\ a &=A+\sqrt{A^{2}-G^{2}} \\\\
    \text{By } (1)-(2),\\\\
    2b &=2 A-2 \sqrt{A^{2}-G^{2}} \\\\
    \therefore\ b &=A-\sqrt{A^{2}-G^{2}}
    \end{aligned}$

  • If the ratio of A.M. and G.M. between two positive numbers is $m: n$,
    then prove that the numbers are in the ratio $\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

  • SOLUTION
    Let the two numbers be $a$ and $b\\\\ $.


    A.M. between $a$ and $b=\dfrac{a+b}{2}\\\\ $


    G.M. between $a$ and $b=\sqrt{a b}\\\\ $


    By the problem,



    $\begin{aligned}
    &\\
    \dfrac{\text{A.M}}{\text{G.M}}&=\dfrac{m}{n} \\\\
    \dfrac{a+b}{2 \sqrt{a b}}&=\dfrac{m}{n}\\\\
    \text{Let } a+b=k m, 2 \sqrt{a b}&=k n\\\\
    \therefore\ (a+b)^{2} &=k^{2} m^{2} \\\\
    4 a b &=k^{2} n^{2} \\\\
    a^{2}+2 a b+b^{2} &=k^{2} m^{2} \\\\
    a^{2}+2 a b+b^{2}-4 a b &= k^{2} n^{2}-4 a b \\\\
    a^{2}-2 a b+b^{2} &=k^{2} m^{2}-k^{2} n^{2} \\\\
    (a-b)^{2} &=k^{2}\left(n^{2}-n^{2}\right) \\\\
    a-b &=k \sqrt{m^{2}-n^{2}}\\\\
    \dfrac{a+b}{a-b} &=\dfrac{k m}{k \sqrt{m^{2}-n^{2}}} \\\\
    &=\dfrac{m}{\sqrt{m^{2}-n^{2}}}\\\\
    \end{aligned}$



    By Componendo and Dividendo,


    $\begin{aligned}
    &\\
    \dfrac{(a+b)+(a-b)}{(a+b)-(a-b)} &=\dfrac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}} \\\\
    \dfrac{2 a}{2 b} &=\dfrac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}} \\\\
    \dfrac{a}{b} &=\dfrac{m+\sqrt{m^{2}-n^{2}}}{m-\sqrt{m^{2}-n^{2}}}
    \end{aligned}$



  • Given that the system of linear equations


    $\begin{aligned}
    x+y+z &=a+4 \\\\
    2 x-y+2 z &=2 a+2 \\\\
    3 x+2 y-3 z &=1-2 a\\\\
    \end{aligned}$


    where $x, y, z$ in this order are in G.P. and $a$ is a positive real number.
    Find the value of $a$.

  • SOLUTION
    $\begin{aligned}
    x+y+z=a+4 \ldots(1)&\\\\
    2 x-y+2 z=2 a+2 \ldots(2)&\\\\
    3 x+2 y-3 z=1-2 a\ldots(3)& \\\\
    \text{By } (1)+(2),& \\\\
    3 x+3 z =3 a+6 &\\\\
    \therefore\ x+z =a+2& \\\\
    \text { Substituting } x+z=a+2 &\text { in (1) } \\\\
    a+2+y&=a+4 \\\\
    \therefore\ y&=2\\\\
    (2) \times 2 \Rightarrow\ 4 x-2 y+4 z&=4 a+4 \\\\
    (3) \times 1 \Rightarrow\ 3 x+2 y-3 z&=1-2 a \\\\
    \text { By addition, } 7 x+z&=2 a+5 \\\\
    \text { By }(5)-(4), 6 x&=a+3 \\\\
    \text { Substituting } x&=\dfrac{a+3}{6} \\\\
    \dfrac{a+3}{6}+z&=a+2 \\\\
    z=\dfrac{6 a+12-a-3}{6} &\\\\
    z=\dfrac{5 a+9}{6}\hspace{2cm}&\\\\
    \end{aligned}$


    Since $x, y, z$ are in G.P.,


    $\begin{aligned}
    &\\
    \dfrac{y}{x}&=\dfrac{z}{y} \\\\
    x z&=y^{2} \\\\
    \dfrac{a+3}{6} \times \dfrac{5 a+9}{6}&=2^{2} \\\\
    5 a^{2}+2 y a+27&=144 \\\\
    5 a^{2}+2 y a-117&=0 \\\\
    (5 a+3 q)(a-3)&=0\\\\
    \therefore\ a &=-\dfrac{39}{5} \text { (or) } \\\\
    a &=3\\\\
    \end{aligned}$


    Since $a>0, a=-\dfrac{39}{5}$ is rejected.


    $\begin{aligned}
    &\\
    &\therefore\ a=3
    \end{aligned}$

  • If $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a GP be $a, b, c(a, b, c>0)$,
    then prove that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

  • SOLUTION
    Let the first term be $A$ and the cominon ratio be $R$ of the given G.P.



    $\begin{aligned}
    &\\
    \therefore u_p &=a \\\\
    A R^{\ p-1} &=a \\\\
    R^{\ p-1} &=\dfrac{a}{A} \\\\
    \log \left(R^{\ p-1}\right) &=\log \left(\dfrac{a}{A}\right) \\\\
    (p-1) \log R &=\log a-\log A\\\\
    \end{aligned}$


    $p-1=\dfrac{\log a-\log A}{\log R} \\\\ $



    Similarly,


    $\begin{aligned}
    &\\
    q-1 &=\dfrac{\log b-\log A}{\log R} \\\\
    r-1 &=\dfrac{\log c-\log A}{\log R}\\\\
    \end{aligned}$


    $\begin{aligned}
    &(1)-(2) \Rightarrow p-q=\dfrac{\log a-\log b}{\log R} \\\\
    &(2)-(3) \Rightarrow g-r=\dfrac{\log b-\log c}{\log R} \\\\
    &(3)-(1) \Rightarrow r-p=\dfrac{\log c-\log a}{\log R}\\\\
    \end{aligned}$


    $\begin{aligned}
    \therefore\ & (p-q) \log c =\left(\dfrac{\log a-\log b}{\log R}\right) \log c \\\\
    & (q-r) \log a =\left(\dfrac{\log b-\log c}{\log R}\right) \log a \\\\
    & (r-p) \log b =\left(\dfrac{\log c-\log a}{\log R}\right) \log b \\\\
    \end{aligned}$


    $\begin{aligned}
    &\text{By } (1)+(2)+(3), \\\\
    \therefore\ &(p-q) \log c+(q-r) \log a+(r-p) \log b \\\\
    &=\left(\dfrac{\log a-\log b}{\log R}\right) \log c+\left(\dfrac{\log b-\log c}{\log R}\right) \log a+\left(\dfrac{\log c-\log a}{\log R}\right) \log b \\\\
    &=\dfrac{\log a \cdot \log c-\log b \cdot \log c+\log a \cdot \log b-\log a \cdot \log c+\log b \cdot \log c-\log a \log b}{\log R} \\\\
    &=0
    \end{aligned}$

    Post a Comment for "Geometric Progression : Problems and Solutions -Part (2)"

    Sponsored by: iklanvideo.io