Skip to content Skip to sidebar Skip to footer

Circular Measures (IGCSE A LEVEL 9709)







One Radian




An arc equal in length to the radius of a circle subtends an angle of $1$ radian at the centre.







Useful Relations


$\begin{aligned}
2\pi \text{ radians}=360 \text{ degrees}\\\\
\pi \text{ radians}=180 \text{ degrees}\\\\
1\text{ radian}=\dfrac{180}{\pi} \text{ degrees}\\\\
1\text{ degree}=\dfrac{\pi}{180} \text{ radians}\\\\
\end{aligned}$







Arc Length and Area of a Sector





  • When $\theta$ is measured in radians, the length of arc $AB$ is $r\theta$ .


  • When $\theta$ is measured in radians, the area of sector $AOB$ is $\dfrac{1}{2}r^2\theta$ .










  1. The diagram shows ane quilateral triangle, $PQR$, with side length $5$ cm.
    $M$ is the midpoint of the line $QR$. An arc of a circle, centre $P$, touches $QR$
    at $M$ and meets $PQ$ at $X$ and $PR$ at $Y$.
    Find in terms of $\pi$ and $\sqrt{3}:$

    (a) the total perimeter of the shaded region.

    (b) the total area of the shaded region.
    SOLUTION



    Join PM, then $\triangle P R M$ and $\triangle P O M$ are $30^{\circ}-60^{\circ}$ right triangles,

    $\begin{aligned}
    &\\
    \therefore \ P M &=\dfrac{\sqrt{3}}{2}\\\\
    P Q&=\dfrac{5 \sqrt{3}}{2}\\\\
    \text{arc length of } X Y &=P M \cdot \dfrac{\pi}{3}\\\\
    &=\dfrac{5 \sqrt{3}}{2} \cdot \dfrac{\pi}{3}\\\\
    &=\dfrac{5 \sqrt{3} \pi}{6} \mathrm{~cm}\\\\
    \text{perimeter of shaded region}
    &=5+\dfrac{5 \sqrt{3} \pi}{6} \mathrm{~cm}\\\\
    \text{total area of shaded region}& = \text{area of triangle - area of rector}&\\\\
    &=\dfrac{\sqrt{3}}{4} \times 5^{2}-\dfrac{1}{2} \times \dfrac{5 \sqrt{3}}{2} \times \dfrac{\pi}{6} \\\\
    &=\dfrac{25 \sqrt{3}}{4}-\dfrac{5 \sqrt{3} \pi}{24} \\\\
    &=\dfrac{5 \sqrt{3}}{24}[30-\pi] \mathrm{cm}^{2}
    \end{aligned}$





  2. In the diagram, $OAB$ is a sector of a circle with centre $O$ and radius $8$ cm.
    Angle $BOA$ is $\alpha$ radians. $OAC$ is a semicircle with diameter $OA$.
    The area of the semicircle $OAC$ is twice the area of the sector $OAB$.

    (a) Find $\alpha$ in terms of $\pi$.

    (b) Find the perimeter of the complete figure in terms of $\pi$.
    SOLUTION


    $\begin{aligned}
    \text{radius of sector } O A B &=8 \mathrm{~cm}\\\\
    \text{radius of semicircle } O A C &=4 \mathrm{~cm}\\\\
    \text{area of sector } O A B &=\dfrac{1}{2}\left(8^{2}\right) \alpha\\\\
    &=32 \alpha\\\\
    \text{area of semicircle } O A C &=\dfrac{1}{2}\left(4^{2}\right) \pi\\\\
    &=8 \pi \mathrm{cm}^{2}\\\\
    \text{By the problem},&\\\\
    8 \pi &=2(32 \alpha)\\\\
    \alpha &=\dfrac{\pi}{8}\\\\
    \therefore\ \text{length of arc } A B=8 \alpha\\\\
    &=8\left(\dfrac{\pi}{8}\right) \\\\
    &=\pi \mathrm{cm}\\\\
    \end{aligned}$

    $\begin{aligned}
    &\text{perimeter } \text{of given figure}\\\\
    &=O B+\text { length of arc } A B+\text { length of semicircle } \\\\
    &=8+\pi+4 \pi \\\\
    &=8+5 \pi
    \end{aligned}$






  3. The diagram shows triangle $ABC$ in which $AB$ is perpendicular to $BC$.
    The length of $AB$ is $4$ cm and angle $CAB$ is $\alpha$ radians. The arc
    $DE$ with centre $A$ and radius $2$ cm meets $AC$ at $D$ and $AB$ at $E$ .
    Find, in terms of $\alpha$,

    (a) the area of the shaded region,

    (b) the perimeter of the shaded region.





    SOLUTION
    $\begin{aligned}
    \text{length of arc } DE &=2\alpha \text{ cm }\\\\
    BE &=2 \text{ cm }\\\\
    \dfrac{BC}{AB} &=\ \tan\alpha\\\\
    \therefore\ BC &=\ AB\tan\alpha\\\\
    &=\ 4\tan\alpha \text{ cm }\\\\
    \dfrac{AC}{AB} &=\ \sec\alpha\\\\
    \therefore\ AC &=\ AB\sec\alpha\\\\
    &=\ 4\sec\alpha \text{ cm }\\\\
    \therefore\ DC &=\ 4\sec\alpha - 2\\\\
    \end{aligned}$

    $\begin{aligned}
    & \text{area of shaded region } \\\\
    =&\ \text{area of triangle} - \text{ area of sector}\\\\
    =&\ \dfrac{1}{2}(AB \cdot BC) - \dfrac{1}{2}AD^2\cdot\alpha\\\\
    =&\ \dfrac{1}{2}(4 \cdot 4\tan\alpha) - \dfrac{1}{2}\cdot2^2\cdot\alpha\\\\
    =&\ 8\tan\alpha - 2\cdot\alpha\\\\
    =&\ 2(4\tan\alpha - \alpha)\\\\
    & \text{perimeter of shaded region } \\\\
    =&\ DC + BC + BE + \text{length of arc } DE\\\\
    =&\ 4\sec\alpha - 2 + 4\tan\alpha + 2 + 2\alpha\\\\
    =&\ 2(2\sec\alpha + 2\tan\alpha + \alpha)
    \end{aligned}$






  4. The diagram shows a circle with centre $A$ and radius $r$.
    Diameters $CAD$ and $BAE$ are perpendicular to each other.
    A larger circle has centre $B$ and passes through $C$ and $D$.

    (a) Show that the radius of the larger circle is $r\sqrt{2} $.

    (b) Find the area of the shaded region in terms of $r$.

    SOLUTION



    $B C = \text{ radius of larger circle.}\\\\ $

    $\triangle B A C \text{is a } 45^{\circ}-45^{\circ} \text{ right triangle.}\\\\ $

    $\therefore\ B C=r \sqrt{2} $

    $\begin{aligned}
    & \\
    A_{1}=\text { area of semicircle } C E D &=\dfrac{1}{2} \pi r^{2} \\\\
    A_{2}=\text { area of sector } C B D &=\dfrac{1}{2} B C^{2} \times \angle C B D \\\\
    &=\dfrac{1}{2}(r \sqrt{2})^{2} \times\left(\dfrac{\pi}{2}\right) \\\\
    &=\dfrac{1}{2} \pi r^{2}\\\\
    A_{3}=\text { area of } \triangle C B D &=\dfrac{1}{2} B C \times B D \\\\
    &=\dfrac{1}{2}(r \sqrt{2})(r \sqrt{2}) \\\\
    &=r^{2} \\\\
    \therefore\ \text { area of shaded region } &=A_{1}-\left(A_{2}-A_{3}\right) \\\\
    &=\dfrac{1}{2} \pi r^{2}-\left(\dfrac{1}{2} \pi r^{2}-r^{2}\right) \\\\
    &= r^{2}
    \end{aligned}$





  5. The diagram shows a sector $OAB$ of a circle with centre $O$ and radius $r$.
    Angle AOB is $\theta$ radians. The point $C$ on $OA$ is such that $BC$ is
    perpendicular to $OA$. The point $D$ is on $BC$ and the circular arc $AD$ has
    centre $C$.

    (a) Find $AC$ in terms of $r$ and $\theta$.

    (b) Find the perimeter of the shaded region $ABD$ when $\theta= \dfrac{1}{3}\pi$
    and $r = 4$, giving your answer as an exact value.
    SOLUTION
    $\begin{aligned}
    \triangle O B C & \text{ is a right triangle.}\\\\
    \therefore B C &=r \sin \theta \\\\
    O C &=r \cos \theta \\\\
    A C &=O A-O C \\\\
    &=r-r \cos \theta \\\\
    &=r(1-\cos \theta) \\\\
    C D &=A C\ \ (\because \text { radii of small sector }) \\\\
    \therefore\ C D &=r(1-\cos \theta)\\\\
    r=4, \theta &=\dfrac{\pi}{3} \text { (given) } \\\\
    \textbf { length of arc } A D &=A C \times \dfrac{\pi}{2} \\\\
    &=\dfrac{\pi r}{2}(1-\cos \theta) \\\\
    &=\dfrac{\pi \times 4}{2}\left(1-\cos \dfrac{\pi}{3}\right) \\\\
    &=\pi \\\\
    B D &=B C-C D \\\\
    &=r \sin \theta-r(1-\cos \theta) \\\\
    &=r(\sin \theta+\cos \theta-1)\\\\
    &=4\left(\sin \dfrac{\pi}{3}+\cos \dfrac{\pi}{3}-1\right) \\\\
    &=4\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}-1\right) \\\\
    &=2(\sqrt{3}-1) \\\\
    \textbf { length of arc } A B &=r \theta \\\\
    &=\dfrac{4 \pi}{3} \\\\
    \therefore\ \textbf{ Perimeter of shaded} & \textbf{ region }\\\\
    &=\pi+\dfrac{4 \pi}{3}+2(\sqrt{3}-1) \\\\
    &=\dfrac{7 \pi}{3}+2(\sqrt{3}-1)
    \end{aligned}$





  6. The diagram shows a sector, $P O Q$, of a circle, centre $O$, with radius
    $4 \mathrm{~cm}$. The length of arc $P Q$ is $7 \mathrm{~cm}$.
    The lines $P X$ and $Q X$ are tangents to the circle at $P$ and $Q$, respectively.

    (a) Find angle $P O Q$, in radians.

    (b) Find the length of $P X$.

    (c) Find the area of the shaded region.



    SOLUTION


    radius $(r)=4 \mathrm{~cm}\\\\ $

    length of arc $P Q(s)=7 \mathrm{~cm}\\\\ $

    $\angle P O Q(\theta)=\dfrac{3}{8}=\dfrac{7}{4} \text{ radians}\\\\ $

    $\triangle P O X \text{ is a right triangle.}\\\\ $

    $\begin{aligned}
    \therefore P X &=O P \tan \left(\dfrac{\theta}{2}\right) \\\\\
    &=4 \tan \left(\dfrac{7}{8}\right) \mathrm{cm}\\\\
    \end{aligned}$

    $\begin{aligned}
    &\text{area of shaded region}\\\\
    =&\ 2 \times \text { area of } \Delta P O \times-\text { area of sector POQ } \\\\
    =&\ 2\left(\dfrac{1}{2} \times O P \times P X\right)-\dfrac{1}{2} O P^{2} \times \theta \\\\
    =&1\ 6 \tan \left(\dfrac{7}{8}\right)-\dfrac{1}{2} \times 16 \times \dfrac{7}{4} \\\\
    =&\ 16 \tan \left(\dfrac{7}{8}\right)-14 \mathrm{~cm}^{2}
    \end{aligned}$





  7. The diagram shows a sector, $P O R$, of a circle, centre $O$, with radius
    $8 \mathrm{~cm}$ and sector angle $\dfrac{\pi}{3}$ radians.
    The lines $O R$ and $Q R$ are perpendicular and $O P Q$ is a straight line.
    Find the exact area of the shaded region.
    SOLUTION
    $\triangle O Q R \text{ is a } 30^{\circ}-60^{\circ}\text{ right triangle.}\\\\ $

    $\therefore\ QR=8 \sqrt{3}\\\\ $

    $\begin{aligned}
    \text{area of }\triangle OQR &=\dfrac{1}{2} \times 8 \times 8 \sqrt{3} \\\\
    &=32 \sqrt{3} \mathrm{~cm}^{2} \\\\
    \text{area of sector } OPR &=\dfrac{1}{2} \times 8^{2} \times \dfrac{\pi}{3}\\\\
    &=\dfrac{32 \pi}{3} \mathrm{~cm}^{2}\\\\
    \end{aligned} $

    $\begin{aligned}
    & \text{ area of shaded region}\\\\
    & \text{area of } \triangle O Q R - \text{area of sector } OPR\\\\
    =&\ 32 \sqrt{3}-\dfrac{32 \pi}{3} \\
    =&\ \dfrac{32}{3}(3 \sqrt{3}-\pi) \mathrm{cm}^{2}
    \end{aligned}$





  8. The diagram shows a sector, $A O B$, of a circle, centre $O$, with radius
    $5 \mathrm{~cm}$ and sector angle $\dfrac{\pi}{3}$ radians.
    The lines $A P$ and $B P$ are tangents to the circle at $A$ and $B$, respectively.

    (a) Find the exact length of $A P$.

    (b) Find the exact area of the shaded region.



    SOLUTION


    $\text{Since } AP \text{ is a tangent,}\\\\ $

    $\triangle O A P \text{ is a right triangle.}\\\\ $

    $\therefore\ A P=5 \tan \left(\dfrac{\pi}{6}\right)\\\\ $

    $\quad \text{area of shaded region}\\\\ $

    $=\ 2 \times$ area of $\triangle O A P$ - area of sector $A O B\\\\ $

    $=\ 2\left(\dfrac{1}{2} \times O A \times A P\right)-\dfrac{1}{2} O A^{2} \times \angle A O B\\\\ $

    $=\ 25 \tan \left(\dfrac{\pi}{6}\right)-\dfrac{25}{2} \times \dfrac{\pi}{3}\\\\ $

    $=\ 25 \tan \left(\dfrac{\pi}{6}\right)-\dfrac{25 \pi}{6}\\\\ $

    $=\ 25\left[\tan \left(\dfrac{\pi}{6}\right)-\dfrac{\pi}{6}\right]$






  9. The diagram shows three touching circles with radii $6 \mathrm{~cm}, 4 \mathrm{~cm}$ and $2 \mathrm{~cm}$.
    Find the area of the shaded region.






    Since $A C^{2}+B C^{2}=8^{2}+6^{2}=100$ and $A B^{2}=10^{2}=100.\\\\ $

    $A B^{2}=A C^{2}+B C^{2}.\\\\ $

    $\therefore \triangle A B C$ is a right triangle.

    $\begin{aligned}
    &\\
    \angle A&=\tan ^{-1}\left(\dfrac{3}{4}\right) \\\\
    \angle B&=\tan ^{-1}\left(\dfrac{4}{3}\right) \\\\
    \angle C&=\dfrac{\pi}{2}\\\\
    \text { area of } \triangle A B C &=\dfrac{1}{2} \times A C \times B C \\\\
    &=\dfrac{1}{2} \times 8 \times 6 \\\\
    &=24 \mathrm{~cm}^{2} \\\\
    P=\dfrac{1}{2} \times 6^{2} \times \tan ^{-1}\left(\dfrac{3}{4}\right) &=18 \tan ^{-1}\left(\dfrac{3}{4}\right) \mathrm{cm}^{2} \\\\
    g=\dfrac{1}{2} \times 2^{2} \times \dfrac{\pi}{2} &=\pi \mathrm{cm}^{2} \\\\
    R=\dfrac{1}{2} \times 4^{2} \times \tan ^{-1}\left(\dfrac{4}{3}\right) &=8 \tan ^{-1}\left(\dfrac{4}{3}\right) \mathrm{cm}^{2}\\\\
    \end{aligned}$

    $\begin{aligned}
    &\text{area of shaded region}\\\\
    =& \ \text { area of } \triangle A B C-(P+8+R) \\
    =&\ 24-\left(18 \tan ^{-1}\left(\dfrac{3}{4}\right)+\pi+8 \tan ^{-1}\left(\dfrac{4}{3}\right)\right) \\
    =&\ 1.857 \mathrm{~cm}^{2}
    \end{aligned}$






  10. The diagram shows a semicircle, centre $O$, with radius $8 \mathrm{~cm} .$
    $F H$ is the arc of a circle, centre $E$. Find the area of:

    (a) triangle $E O F$

    (b) sector $F O G$

    (c) sector $F E H$

    (d) the shaded region.



    SOLUTION


    $\begin{aligned}
    &\textbf{area of } \triangle E O F\\\\
    =&\ \dfrac{1}{2} \times E O \times F I \\\\
    =&\ \dfrac{1}{2} \times 8 \times 8 \sin (\pi-2) \\\\
    =&\ 32 \sin (\pi-2) \mathrm{cm}^{2}\\\\
    &\textbf{area of sector } FOG\\\\
    =&\ \dfrac{1}{2} \times O F^{2} \times \angle F O G \\\\
    =&\ \dfrac{1}{2} \times 8^{2} \times(\pi-2) \\\\
    =&\ 32(\pi-2) \mathrm{cm}^{2} \\\\
    \angle F E H =&\ \dfrac{1}{2} \angle F O G \\\\
    =&\ \dfrac{1}{2}(\pi-2)\\\\
    E F^{2}=& 8^{2}+8^{2}-2\left(8^{2}\right) \cos (2) \\\\
    =& 128(1-\cos (2)) \\\\
    & \textbf{ area of sector FEH } \\\\
    =&\ \dfrac{1}{2} E F^{2} \times \angle F E H \\\\
    =&\ \dfrac{1}{2} \times 128 \times(1-\cos (2)) \times \dfrac{1}{2}(\pi-2) \\\\
    =&\ 32(\pi-2)(1-\cos (2)) \mathrm{cm}^{2}\\\\
    & \ \textbf{area of shaded region}\\\\
    =&\ \textbf{area of sector } FOG- \textbf{area of } FOH\\\\
    =&\ \textbf{ area of sector } FOG- (\textbf{area of sector } FEH - \textbf{area of } \triangle EOF) \\\\
    =&\ 32(\pi-2)-32(\pi-2)(1-\cos (2))+32 \sin (\pi-2) \\\\
    =&\ 32[(\pi-2) \cos (2)+\sin (\pi-2)] \\\\
    =&\ 13.895 \mathrm{~cm}^{2}\\\\
    \end{aligned}$





  11. The diagram shows a sector, $E O G$, of a circle, centre $O$, with radius $r \mathrm{~cm} .$
    The line $G F$ is a tangent to the circle at $G$, and $E$ is the midpoint of $O F$.

    (a) The perimeter of the shaded region is $P \mathrm{~cm}$.
    Show that $P=\dfrac{r}{3}(3+3 \sqrt{3}+\pi)$.

    (b) The area of the shaded region is $A \mathrm{~cm}^{2}$.
    Show that $A=\dfrac{r^{2}}{6}(3 \sqrt{3}-\pi)$.



    SOLUTION
    Since $E$ is the midpoint of of, $O E=E F=r \mathrm{~cm}\\\\ $.

    Since $GF$ a tangent, $OG\perp GF.\\\\ $

    $\therefore\ \triangle O G F \text{ is a } 30^{\circ}-60^{\circ} \text{ right triangle.}\\\\ $

    $\therefore\ G F=\sqrt{3} \mathrm{~cm}\\\\ $

    length of arc GF $=r \cdot \dfrac{\pi}{3} \mathrm{~cm}\\\\ $

    $\begin{aligned}
    \therefore P &=r+\sqrt{3} r+r \cdot \dfrac{\pi}{3} \\\\
    &=\dfrac{r}{3}(3+3 \sqrt{3}+\pi)\\\\
    \end{aligned}$

    $\begin{aligned}
    &\textbf{ area of sector OEG}\\\\
    =&\ \dfrac{1}{2} r^{2}\left(\dfrac{\pi}{3}\right) \\\\
    =&\ \dfrac{\pi}{6} r^{2}\\\\
    &\textbf{area of shaded region}\\\\
    =& \text { area of triangle - area of rector } \\\\
    =&\ \dfrac{1}{2} r \cdot \sqrt{3} r-\dfrac{\pi}{6} r^{2} \\\\
    =&\ \dfrac{\sqrt{3}}{2} r^{2}-\dfrac{\pi}{6} r^{2} \\\\
    =&\ \dfrac{r^{2}}{6}(3 \sqrt{3}-\pi)
    \end{aligned}$





  12. The diagram shows two circles with radius $r \mathrm{~cm}$.
    The centre of each circle lies on the circumference of the other circle.
    Find, in terms of $r$, the exact area of the shaded region.
    SOLUTION



    Let $A$ and $B$ denote the area of respective regions.

    $\therefore\ A=$ area of equilateral $\triangle\\\\ $

    $\quad\ =\dfrac{\sqrt{3}}{4} r^{2}\\\\ $

    $\begin{aligned}
    A+B&= \text{ area of sector}\\\\
    &=\dfrac{1}{2} r^{2}\left(\dfrac{\pi}{3}\right) \\\\
    &=\dfrac{\pi}{6} r^{2} \\\\
    B &=A+B-A \\\\
    &=\dfrac{\pi}{6} r^{2}-\dfrac{\sqrt{3}}{4} r^{2} \\\\
    &=\dfrac{r^{2}}{12}(2 \pi-3 \sqrt{3})\\\\
    \textbf{Area of } & \textbf{ shaded region}\\\\
    &=2 A+4 B \\\\
    &=2(A+B)+2 B \\\\
    &=2\left(\dfrac{\pi}{6} r^{2}\right)+\dfrac{r^{2}}{6}(2 \pi-3 \sqrt{3}) \\\\
    &=\dfrac{r^{2}}{6}(4 \pi-3 \sqrt{3})
    \end{aligned}$





  13. The diagram shows a square of side length $10$ cm.
    A quarter circle, of radius $10$ cm, is drawn from each vertex of the square.
    Find the exact area of the shaded region.

    SOLUTION



    Let $A, B$ and $C$ denot the areas of respective regions.

    Now, cosider the diagram as below.





    $P Q=Q R=P R=$ radii of congruent circles.

    $\therefore$ area of $\triangle P Q R=\dfrac{\sqrt{3}}{4}\left(10^{2}\right)=25 \sqrt{3} \mathrm{~cm}^{2}\\\\ $

    area of sector $P Q R=\dfrac{1}{2}\left(10^{2}\right) \dfrac{\pi}{3}\\\\ $

    $\hspace{3cm} =\dfrac{50 \pi}{3} \mathrm{~cm}^{2}\\\\ $


    Let $E$ be the area of yellow-shaded region as shown below.





    $\begin{aligned}
    \therefore\ E &=\text { area of sector }-\text { area of } \triangle \\\\
    &=\dfrac{50 \pi}{3}-25 \sqrt{3} \mathrm{~cm}^{2} \\\\
    B+C+E &=\dfrac{1}{2}\left(10^{2}\right)\left(\dfrac{\pi}{6}\right) \\\\
    &=\dfrac{25 \pi}{3} \mathrm{~cm}^{2} \\\\
    \therefore\ B+C &=\dfrac{25 \pi}{3}-\dfrac{50 \pi}{3}+25 \sqrt{3} \\\\
    &=25 \sqrt{3}-\dfrac{25 \pi}{3} \mathrm{~cm}^{2}\\\\
    \end{aligned}$


    Now recall to give diagram.





    $\begin{aligned}
    A &=\text { area of square }-4(B+C) \\\\
    &=10^{2}-4\left[25 \sqrt{3}-\dfrac{25 \pi}{3}\right] \\\\
    &=100-100\left[\sqrt{3}-\dfrac{\pi}{3}\right] \\\\
    &=100\left[1-\sqrt{3}+\dfrac{\pi}{3}\right] \mathrm{cm}^{2}
    \end{aligned}$





  14. The diagram shows a circle with radius $1$ cm, centre $O$.
    Triangle AOB is right angled and its hypotenuse AB is a tangent
    to the circle at $P$. Angle $BAO = x$ radians.

    (a) Find an expression for the length of AB in terms of $\tan x$.

    (b) Find the value of $x$ for which the two shaded areas are equal.
    SOLUTION



    $\begin{aligned}
    \dfrac{1}{A P} &=\tan x \\\\
    A P &=\dfrac{1}{\tan x} \\\\
    \dfrac{P B}{1} &=\tan x \\\\
    P B &=\tan x \\\\
    A B &=A P+P B \\\\
    &=\tan x+\dfrac{1}{\tan x}\\\\
    \textbf{Area } & \textbf{ of triangle}\\\\
    &=\dfrac{1}{2} \times A B \times O P \\\\
    &=\dfrac{1}{2}\left(\tan x+\dfrac{1}{\tan x}\right)\\\\
    \textbf{Area } & \textbf{ of sector}\\\\
    &=\dfrac{1}{2}\left(\dfrac{3 \pi}{2}\right) \\\\
    &=\dfrac{3 \pi}{4}\\\\
    \textbf{By the problem}&\\\\
    \dfrac{1}{2}\left(\tan x+\dfrac{1}{\tan x}\right) &=\dfrac{3 \pi}{4} \\\\
    \dfrac{1}{2}\left(\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\sin x}\right) &=\dfrac{3 \pi}{4} \\\\
    \dfrac{\sin ^{2} x+\cos ^{2} x}{2 \sin x \cos x} &=\dfrac{3 \pi}{4} \\\\
    \dfrac{1}{\sin 2 x} &=\dfrac{3 \pi}{4} \\\\
    \sin 2 x &=\dfrac{4}{3 \pi}
    \end{aligned}$





  15. The diagram shows a sector, $AOB$, of a circle, centre $O$, with radius $R$ cm
    and sector angle $\dfrac{π}{3}$ radians.

    An inner circle of radius $r$ cm touches the three sides of the sector.


    (a) Show that $R = 3r$.

    (b) Show that $\dfrac{\text{area of inner circle}}{\text{area of sector}}=\dfrac{2}{3}$ .


    SOLUTION



    let the $X, P, Y$ be the point of tangency as shown in figure.


    The line joining the point $O$ and $P$ passes theough the centre of inscribed cirle.


    Let that centre be $Q.\\\\ $


    $\therefore Q X=Q Y=QS=r\\\\ $


    Since $OP$ bisects $\angle AOB,\\\\ $


    $\angle A O P=\angle P O B=\dfrac{\pi}{6} \mathrm{rad}\\\\ $


    $\therefore \triangle OQX$ and $OQY$ are $30^{\circ}-60^{\circ}$ right triangle.


    Thus, $OQ =2 r$ and $O P=R=3 r\\\\$.


    $\begin{aligned}
    \dfrac{\text { Area of inner circle }}{\text { Area of sector }}&=\dfrac{\pi r^{2}}{\dfrac{1}{2} R^{2}\left(\dfrac{\pi}{3}\right)}\\\\
    &=\dfrac{\pi r^{2}}{\dfrac{1}{2} \cdot \dfrac{\pi}{3} \cdot 9 r^{2}} \\\\
    &=\dfrac{2}{3}
    \end{aligned}$






  16. The diagram shows a metal plate made by fixing together two pieces,

    $OABCD$ (shaded) and $OAED$ (unshaded). The piece $OABCD$ is a minor sector of

    a circle with centre $O $and radius $2r$. The piece $OAED$ is a major sector of

    a circle with centre $O$ and radius $r$. Angle $AOD$ is $\alpha$ radians.

    Simplifying your answers where possible, find, in terms of $\alpha, \pi$ and $r$,


    (a) the perimeter of the metal plate,


    (b) the area of the metal plate.


    It is now given that the shaded and unshaded pieces are equal in area.


    (c) Find $\alpha$ in terms of $\pi$.

    SOLUTION

    $\begin{aligned}
    l_{1} &=\text { length of arc AED. } \\\\
    &=r(2 \pi-\alpha) \\\\
    l_{2} &=\text { length of arc BD } \\\\
    &=2 r \alpha\\\\
    \textbf{Perimeter } & \textbf{ of metal plate}\\\\
    &=l_{1}+l_{2}+2 r \\\\
    &=r(2 \pi-\alpha)+2 r \alpha+2 r \\\\
    &=r(2 \pi-\alpha+2 \alpha+2) \\\\
    &=r(2 \pi+\alpha+2)\\\\
    \textbf{By the problem,}&\\\\
    \text { shaded are } &=\text { unshaded area } \\\\
    \dfrac{1}{2}(2 r)^{2} \alpha &=\dfrac{1}{2} r^{2}(2 \pi-\alpha) \\\\
    4 \alpha &=2 \pi-\alpha \\\\
    5 \alpha &=2 \pi \\\\
    \alpha &=\dfrac{2 \pi}{5}
    \end{aligned}$




Post a Comment for "Circular Measures (IGCSE A LEVEL 9709)"

Sponsored by: iklanvideo.io