Skip to content Skip to sidebar Skip to footer

Analytic Geometry : The Circles





Circle တစ်ခု၏ ဗဟို၊ အချင်းဝက်ကို သိလျှင် Circle Equation ကို ရှာယူနိုင်ကြောင်း Conic Sections တွင် တင်ပြခဲ့ပြီး ဖြစ်ပါသည်။ ယခုသင်ခန်းစာတွင် circle တစ်ခု၏ ဂုဏ်သတ္တိများကို အသုံးပြု၍ analytic geometry ဆိုင်ရာ IGCSE A Level ပုစ္ဆာများနှင့် အဖြေများကို တင်ပြထားပါသည်။









  1. The points $A(-8,1), B(4,5)$ and $C(-4,9)$ lie on the circle, as shown in the diagram.


    (a) Show that $A B$ is a diameter of the circle.

    (b) Find an equation of the circle.

    SOLUTION
    $\begin{aligned}
    &A:\ (-8,1) \\\\
    &B:\ (4,5) \\\\
    &C:\ (-4,9) \\\\
    \end{aligned}$


    $\begin{aligned}
    \text { gradient of } A C &=\dfrac{9-1}{-4+8} \\\\
    &=2\\\\
    \text { gradient of } B C &=\dfrac{9-5}{-4-4} \\\\
    &=-\dfrac{1}{2}\\\\
    \therefore\ \text { gradient of } & A C \times \text { gradient of } B C\\\\
    &=2 \times\left(-\dfrac{1}{2}\right)\\\\
    &=-1 \\\\
    \end{aligned}$


    $\therefore A C \perp B C\\\\ $


    $\therefore\ A B \text { is a diameter. }\\\\ $


    Let $P$ be the midpoint of $A B.\\\\ $


    $\therefore P $ is the centre of circle.


    $\begin{aligned}
    &\\
    P &=\left(\dfrac{-8+4}{2}, \dfrac{1+5}{2}\right)=(-2,3) \\\\
    \therefore\ P C &=\sqrt{(-2+4)^{2}+(3-9)^{2}} \\\\
    &=\sqrt{4+36} \\\\
    &=\sqrt{40}\\\\
    \end{aligned}$


    Thus, the equation of the circle is


    $\begin{aligned}
    &\\
    (x+2)^{2}+(y-3)^{2}&=40
    \end{aligned}$





  2. The circle $C$ has equation $x^{2}+18 x+y^{2}-2 y+29=0$.



    (a) Verify the point $P(-7,-6)$ lies on $C$.


    (b) Find an equation for the tangent to $C$ at the point $P$, giving your answer in the form $y=m x+b$.


    (c) Find the coordinates of $R$, the point of intersection of the tangent and


    (d)Find the area of the triangle $A P R$.




    SOLUTION



    $C: x^{2}+18 x+y^{2}-2 y+29=0\\\\ $

    When $x=-7, y=-6\\\\ $

    $\begin{aligned}
    &(-7)^{2}+18(-7)+(-6)^{2}-2(-6)+29\\\\
    =&\ 49-126+36+12+29\\\\
    =&\ 0\\\\
    \end{aligned}$

    $\therefore(-7,-6)$ lies on $C .\\\\ $

    $C: x^{2}+18 x+y^{2}-2 y+29=0\\\\ $

    $x^{2}+18 x+81+y^{2}-2 y+1=-29+81+1\\\\ $

    $(x+9)^{2}+(y-1)^{2}=53\\\\ $

    $\therefore$ centre $(A):(-9,1)\\\\ $

    $\begin{aligned}
    \text{gradent of } A P &=\dfrac{1+6}{-9+7} \\\\
    &=-\dfrac{7}{2} \\\\
    \text{gradient of tangent at } P&=\dfrac{2}{7}\\\\
    \end{aligned}$

    $\therefore$ Equation of tangent at $P$ is

    $\begin{aligned}
    &\\
    y+6 &=\dfrac{2}{7}(x+7) \\\\
    \therefore y&=\dfrac{2}{7} x-4\\\\
    \end{aligned}$

    When the tangent cuts $y$ axis, $x=0\\\\ $.

    $\begin{aligned}
    \therefore\ y &=\dfrac{2}{7}(0)-4=-4 \\\\
    \therefore\ R: &(0,-4) \\\\
    A P &=\text { length of radius } \\\\
    &=\sqrt{53} \\\\
    P R &=\sqrt{(0+7)^{2}+(-4+6)^{2}} \\\\
    &=\sqrt{53}\\\\
    &\text{area of } \triangle A P R\\\\
    &=\dfrac{1}{2} \times A P \times P R \\\\
    &=\dfrac{1}{2} \times \sqrt{53} \times \sqrt{53} \\\\
    &=\dfrac{53}{2}
    \end{aligned}$




  3. The tangent to the circle $(x+4)^{2}+(y-1)^{2}=242$ at $(7,-10)$ meets the $y$-axis at $S$ and the $x$-axis at $T$.


    (a) Find the coordinates of $S$ and $T$.

    (b) Hence, find the area of $\triangle O S T$, where $O$ is the origin.




    SOLUTION



    Circle: $(x+4)^{2}+(y-1)^{2}=2 y 2\\\\ $

    Centre: $(-4,1)\\\\ $

    Tangent point: $(7,-10)\\\\ $

    let $m_{1}$ be the gradient of
    the line parsing through $(-4,1)$
    and $(7,-10)\\\\ $.

    $m_{1}=\dfrac{-10-1}{7+4}=-1\\\\ $

    Let the gradient of toungent to circle at $(7,-10)$ be $m_{2}.\\\\ $

    $\therefore m_{2}=-\dfrac{1}{m_{1}}=1 .\\\\ $

    Let the coordinates of the point $S$ and $T$ be $(0, b)$ and $(a, 0)\\\\ $.

    $\begin{aligned}
    \therefore \dfrac{b-(-10)}{0-7} &=1 \\\\
    b &=-17 \\\\
    \dfrac{0-(-10)}{a-7} &=1 \\\\
    a &=17 \\\\
    S &=(0,-17) \\\\
    T &=(17,0)\\\\
    \text{area of }\triangle OST &=\dfrac{1}{2}|a||b| \\\\
    &=\dfrac{1}{2}|17|-17 \mid \\\\
    &=\dfrac{289}{2}
    \end{aligned}$




  4. The circle $C$ has equation $(x+5)^{2}+(y+3)^{2}=80$.
    The line $l$ is a tangent to the circle and has gradient $2 .$
    Find two possible equations for $l$ giving your answers in the form $y=m x+c$.
    SOLUTION



    $C:(x+5)^{2}+(y+3)^{2}=80\\\\ $


    Centre: $(-5,-3)\\\\ $


    radius $=\sqrt{80}\\\\ $


    Let the gradient of tangent be $m.\\\\ $


    $\therefore m=2\\\\ $


    Let the point where the tangent touches the circle be $(a, b).\\\\ $


    $\begin{aligned}
    \therefore\ \dfrac{b+3}{a+5} &=-\dfrac{1}{2} \\\\
    2 b+6 &=-a-5 \\\\
    a &=-2 b-11\\\\
    \end{aligned}$


    $(a, b)$ lies on circle.


    $\begin{aligned}
    &\\
    \therefore(a+5)^{2}+(b+3)^{2}&=80 \\\\
    (-2 b-11+5)^{2}+(b+3)^{2}&=80\\\\
    \end{aligned}$


    Solving equation, $b=-7$ or $b=1\\\\ $



    $\begin{aligned}
    b=-7 \Rightarrow & a=-2(-7)-11=3 \\\\
    b=1 \Rightarrow & a=-2(1)-11=-13\\\\
    \end{aligned}$


    $\therefore$ At $(3,-7)$, the equation of tangent is


    $\begin{aligned}
    &\\
    y+7 &=2(x-3) \\\\
    y &=2 x-13\\\\
    \end{aligned}$


    At $(-13,1)$, the equation of tangent is


    $\begin{aligned}
    &\\
    y-1&=2(x+13) \\\\
    y&=2 x+27
    \end{aligned}$


  5. The line with equation $2 x+y-5=0$ is a tangent to the circle with equation
    $(x-3)^{2}+(y-p)^{2}=5$.


    (a) Find the two possible values of $p$.


    (b) Write down the coordinates of the centre of the circle in each case.


    SOLUTION



    Method 1




    Line: $2 x+y-5=0\\\\ $


    $y=5-2 x\\\\ $


    $\therefore$ gradient of tangent $\left(m_{1}\right)=-2\\\\ $


    Circle: $(x-3)^{2}+(y-p)^{2}=5\\\\ $


    $\therefore$ centre: $(3, p)\\\\ $


    radius $=\sqrt{5}\\\\ $


    Let the point of tangency be $(a, 5-2 a).\\\\ $


    $\therefore$ The gradient of the line passing through $(a, 5-2 a)$
    and $(3, p)$ is $\dfrac{1}{2}.\\\\ $


    $\begin{aligned}
    \therefore \dfrac{5-2 a-p}{a-3} &=\dfrac{1}{2} \\\\
    10-4 a-2 p &=a-3 \\\\
    5 a &=13-2 p \\\\
    a &=\dfrac{13-2 p}{5}\\\\
    \end{aligned}$


    $(a, 5-2 a)$ lies on circle.


    $\begin{aligned}
    &\\
    \therefore(a-3)^{2}+(5-2 a-p)^{2} &=5 \\\\
    \left(\dfrac{13-2 p}{5}-3\right)^{2}+\left(5+\dfrac{4 p-26}{5}-p\right)^{2} &=5 \\\\
    \left(\dfrac{-2 p-2}{5}\right)^{2}+\left(\dfrac{-p-1}{5}\right)^{2} &=5 \\\\
    \dfrac{4}{25}(p+1)^{2}+\dfrac{1}{25}(p+1)^{2} &=5\\\\
    \end{aligned}$


    $\begin{aligned}
    \therefore(p+1)^{2} &=25 \\\\
    p+1 &=\pm 5 \\\\
    \therefore p &=-6 \text { or } p=4 \\\\
    \text { Whan } p &=-6 \text {, centre }=(3,-6). \\\\
    \text { When } p &=2 \text {, centre }=(3,4).\\\\
    \end{aligned}$


    Method 2




    Line: $2 x+y-5=0\\\\ $


    $y=5-2 x\\\\ $


    Circle: $(x-3)^{2}+(y-p)^{2}=5\\\\ $


    $\therefore$ Centre: $(3, p).\\\\ $


    At the point of tangency,


    $\begin{aligned}
    &\\
    (x-3)^{2}+(5-2 x-p)^{2}&=5\\\\
    x^{2}-6 x+9+(5-2 x)^{2}-2 p(5-2 x)+p^{2}&=5 \\\\
    x^{2}-6 x+9+25-20 x+4 x^{2}-10 p+4 p x+p^{2}-5&=0 \\\\
    5 x^{2}+(4 p-26) x+\left(p^{2}-10 p+29\right)&=0\\\\
    \end{aligned}$



    Since the tangent touch the circle at only one point, the discriminant $=0. $


    $\begin{aligned}
    &\\
    (4 p-26)^{2}-4 \times 5\left(p^{2}-10 p+29\right)&=0 \\\\
    16 p^{2}-208 p+676-20 p^{2}+200 p-580&=0 \\\\
    -4 p^{2}-8 p+96&=0 \\\\
    p^{2}+2 p-24&=0 \\\\
    (p+6)(p-4)&=0\\\\
    \therefore p =-6 \text { or } p&=4 \\\\
    \text { Whan } p =-6 \text {, centre }&=(3,-6). \\\\
    \text { When } p =2 \text {, centre }&=(3,4).
    \end{aligned}$





  6. The circle $C$ has centre $P(11,-5)$ and passes through the point $Q(5,3)$.


    (a) Find an equation for $C$.

    The line $l_{1}$ is a tangent to $C$ at the point $Q$.

    (b) Find an equation for $l_{1}$.

    The line $l_{2}$ is parallel to $l_{1}$ and passes through the midpoint of $P Q .$

    (c) Find the equation of $l_2$.

    Given that $l_{2}$ intersects $C$ at $A$ and $B$. find the coordinates of points $A$ and $B$,

    (d) find the length of the line segment $A B$, leaving your answer in its simplest surd form.



    SOLUTION
    Circle $C$ has centre at $P(11,-5)$ and passes through the point $Q(5,3)\\\\ $.


    $\begin{aligned}
    \therefore \text { radius } &=\sqrt{(11-5)^{2}+(-5-3)^{2}} \\\\
    &=\sqrt{100} \\\\
    &=10\\\\
    \end{aligned}$



    $\therefore$ Equation of $C$ is


    $\begin{aligned}
    &\\
    (x-11)^{2}+(y+5)^{2}&=100\\\\
    \end{aligned}$


    $\begin{aligned}
    \text { Gracient of } P Q &=\dfrac{3+5}{5-11} \\
    &=-\dfrac{4}{3}\\\\
    \end{aligned}$



    $\therefore$ Gradient of tangent at $Q=\dfrac{3}{4}\\\\ $


    Equation of tangent $l_{1}$ at $Q$ is


    $\begin{aligned}
    &\\
    y-3 &=\dfrac{3}{4}(x-5) \\\\
    4 y-12 &=3 x-15 \\\\
    3 x-4 y &=3\\\\
    \end{aligned}$


    Midpoint of $PQ=\left(\dfrac{11+5}{2}, \dfrac{-5+3}{2}\right)=(8,-1)\\\\ $


    The equation line $l_{2}$ prallel to $l_1$ and passing through $(8,-1)$ is


    $\begin{aligned}
    &\\
    y+1&=\dfrac{3}{4}(x-8) \\\\
    y&=\dfrac{3 x-28}{4}\\\\
    \end{aligned}$


    When $l_{2}$ intersects $C$.


    $\begin{aligned}
    &\\
    &(x-11)^{2}+\left(\dfrac{3 x-28}{4}+5\right)^{2}=100 \\\\
    &(x-11)^{2}+\left(\dfrac{3 x-8}{4}\right)^{2}=100 \\\\
    &x^{2}-22 x+121+\dfrac{9 x^{2}-48 x+64}{16}=100 \\\\
    &16 x^{2}-352 x+1936+9 x^{2}-48 x+64=1600 \\\\
    &25 x^{2}-400 x+400=0 \\\\
    &x^{2}-16 x+16=0\\\\
    \end{aligned}$


    $x^{2}-16 x+64=48\\\\ $


    $(x-8)^{2}=48\\\\ $


    $x-8=\pm 4 \sqrt{3}\\\\ $


    $x=8 \pm 4 \sqrt{3}\\\\ $


    When $x=8-4 \sqrt{3}\\\\ $


    $y=\dfrac{1}{4}(24-12 \sqrt{3}-28)\\\\ $


    $=-1-3 \sqrt{3}\\\\ $


    $\begin{aligned}
    \text { When } x&=8+4 \sqrt{3}, \\\\
    y &=\dfrac{1}{4}(24+12 \sqrt{3}-28) \\\\
    &=-1+3 \sqrt{3}\\\\
    \end{aligned}$



    $\therefore$ The coordinates of the points $A$ and $B$ ane $(8-4 \sqrt{3}-1-3 \sqrt{3})$
    and $(8+4 \sqrt{3},-1+3 \sqrt{3})$.


    $\begin{aligned}
    &\\
    \therefore\ A B & =\sqrt{(8 \sqrt{3})^2+6(\sqrt{3})^2} \\\\
    & =\sqrt{192+108} \\\\
    & =\sqrt{300} \\\\
    & =10 \sqrt{3}
    \end{aligned}$







  7. The points $R$ and $S$ lie on a circle with centre $C(a,-2)$,
    as shown in the diagram.The point $R$ has coordinates $(2,3)$ and the point $S$
    has coordinates $(10,1) .$ $M$ is the midpoint of the line segment $R S .$
    The line $l$ passes through $M$ and $C .$



    (a) Find an equation for $l .$

    (b) Find the value of $a .$

    (c) Find the equation of the circle.

    (d) Find the points of intersection, $A$ and $B$, of the line $l$ and the circle.


    SOLUTION
    $M$ is the midpoint of $R S$.


    $\begin{aligned}
    &\\
    \therefore\ M &=\left(\dfrac{2+10}{2}, \dfrac{3+1}{2}\right) \\\\
    &=(6,2)\\\\
    \end{aligned}$



    Gradient of $R S=\dfrac{3-1}{2-10}=-\dfrac{1}{4}$




    $\begin{aligned}
    &\\
    \therefore \text{Gradient of } l&=4\\\\
    \end{aligned}$


    Equation of $l$ is


    $\begin{aligned}
    &\\
    y-2 &=4(x-6) \\\\
    y &=4 x-22\\\\
    \end{aligned}$



    $l$ passes through $(a,-2)$


    $\begin{aligned}
    &\\
    \therefore-2 &=4 a-22 \\\\
    4 a &=20 \\\\
    a &=5\\\\
    \end{aligned}$


    radius of circle $=R C$


    $\begin{aligned}
    &\\
    &=\sqrt{(5-2)^{2}+(-2-3)^{2}} \\\\
    &=\sqrt{34}\\\\
    \end{aligned}$



    The equation of circle is


    $\begin{aligned}
    &\\
    (x-5)^{2}+(y+2)^{2}&=34\\\\
    \end{aligned}$



    When $l$ intersects the circle,


    $\begin{aligned}
    &\\
    &(x-5)^{2}+(4 x-22+2)^{2}=34\\\\
    &(x-5)^{2}+(4 x-22+2)^{2} =34 \\\\
    &x^{2}-10 x+25+16 x^{2}-160 x+400-34=0 \\\\
    &17 x^{2}-170 x+391 =0 \\\\
    &x^{2}-10 x+23 =0 \\\\
    &x^{2}-10 x+25 =2 \\\\
    &(x-5)^{2} =2 \\\\
    &x-5 =\pm \sqrt{2} \\\\
    &x =5 \pm \sqrt{2}\\\\
    \end{aligned}$



    $\begin{aligned}
    \text { When } x&=5-\sqrt{2}, \\\\
    y &=4(5-\sqrt{2})-22 \\\\
    &=-4 \sqrt{2}-2\\\\
    \text { When } x&=5+\sqrt{2} \\\\
    &y=4(5+\sqrt{2})-22 \\\\
    &=4 \sqrt{2}-2 \\\\
    \therefore\ A&=(5+\sqrt{2}, 4 \sqrt{2}-2) \\\\
    B &=(5-\sqrt{2},-4 \sqrt{2}-2)
    \end{aligned}$







  8. The circle $C$ has equation $x^{2}-4 x+y^{2}-6 y=7$. The line $l$ with equation $x-3 y+17=0$ intersects
    the circle at the points $P$ and $Q$.


    (a) Find the coordinates of the point $P$ and the point $Q$.

    (b) Find the equation of the tangent at the point $P$ and the point $Q$.

    (c) Find the equation of the perpendicular bisector of the chord $P Q$.

    (d) Show that the two tangents and the perpendicular bisector intersect at a single point and find the coordinates of the point of intersection.






    SOLUTION



    $\begin{aligned}
    &C: x^{2}-4 x+y^{2}-6 y=7 \\\\
    &x^{2}-4 x+4+y^{2}-6 y+9=4+9+7 \\\\
    &(x-2)^{2}+(y-3)^{2}=20 \\\\
    &\therefore\ \text { centre: }(2,3) \\\\
    &\text { radius }=\sqrt{20}\\\\
    \end{aligned}$


    Let the centre of the circle be $A$.


    $\begin{aligned}
    &\\
    \text { gradient of } A P&=\dfrac{3-5}{2-(-2)}=-\dfrac{1}{2}\\\\
    \end{aligned}$


    gradient of tangent at $P=2$


    $\begin{aligned}
    &\\
    \text { gradient of } A Q &=\dfrac{3-7}{2-4}=2\\\\
    \end{aligned}$


    gradient of tangent at $Q=-\dfrac{1}{2}\\\\ $


    Equation of tangent at $P$ is


    $\begin{aligned}
    &\\
    y-5 &=2(x+2) \\\\
    y &=2 x+9\\\\
    \end{aligned}$


    Equation of tangent at $Q$ is


    $\begin{aligned}
    &\\
    y-7&=-\dfrac{1}{2}(x-4) \\\\
    y&=-\dfrac{1}{2} x+9\\\\
    \end{aligned}$



    Let the midpoint of $PQ$ be $M$.


    $\begin{aligned}
    &\\
    \therefore\ M &=\left(\dfrac{-2+4}{2}, \dfrac{5+7}{2}\right) \\\\
    &=(1,6)\\\\
    \end{aligned}$


    Gradient of $A M=\dfrac{3-6}{2-1}=-3\\\\ $


    $\therefore$ Equation of the perpendicular bisector of $PQ$ is


    $\begin{aligned}
    &\\
    y-6&=-3(x-1) \\\\
    y&=-3 x+9\\\\
    \end{aligned}$


    At the point of intersection of two tangents,


    $\begin{aligned}
    &\\
    2 x+9 &=-\dfrac{1}{2} x+9 \\\\
    \therefore x&=0\\\\
    \end{aligned}$


    Substituting $x=0$ in $y=2 x+9\\\\ $,


    $y=2(0)+9=9\\\\ $


    The point of intersection of two tangents is $(0,9).\\\\ $


    Substituting $x=0$ in $y=-3 x+9\\\\ $.


    $y=-3(0)+9=9\\\\ $


    $\therefore$ The two tangents and the perpendicular bisector intersect at a single point.


    The point of intersection of the two tangents and the perpendicular bisector is $(0,9)$.





  9. The circle with centre $C$ has equation $(x-2)^{2}+(y-1)^{2}=10$.
    The tangents to the circle at points $P$ and $Q$ meet at the point $R$ with coordinates $(6,-1)$.


    (a) Show that $C P R Q$ is a square.

    (b) Hence find the equations of both tangents.






    SOUTION



    $\begin{aligned}
    \text { Circle: } & (x-2)^{2}+(y-1)^{2}=10 \\\\
    \therefore\ \text{center}:\ & (2,1) \\\\
    \text { radius }& =\sqrt{10} \\\\
    C R &=\sqrt{(2-6)^{2}+(1+1)^{2}} \\\\
    &=\sqrt{16+4} \\\\
    &=\sqrt{20}\\\\
    &=\sqrt{10} \sqrt{2} \\\\
    &=\text { radius } \times \sqrt{2}\\\\
    \end{aligned}$


    Since radius $\perp$ tangent, $\triangle C P R$ and $\triangle C Q R$ are
    $45^{\circ}-45^{\circ}$ right triangle.


    $\begin{aligned}
    &\\
    \therefore\ & CPRQ \text{ is a square.}\\\\
    \end{aligned}$


    Let the tangent meet the circle at $P(a, b)$.


    $\begin{aligned}
    &\\
    &(a-2)^{2}+(b-1)^{2}=10 \\\\
    &a^{2}-4 a+4+b^{2}-2 b+1=10 \\\\
    &a^{2}+b^{2}-4 a-2 b=5 ---(1)\\\\
    &\text { Since } C P=P R, \\\\
    &(a-6)^{2}+(b+1)^{2}=10 \\\\
    &a^{2}-12 a+36+b^{2}+2 b+1=10 \\\\
    &a^{2}+b^{2}-12 a+2 b=-27---(2)\\\\
    &(1)-(2) \text{ yields}\\\\
    &8 a-4 b=32\\\\
    &2 a-b=8\\\\
    &b=2 a-8\\\\
    \end{aligned}$


    substituting $b=2 a-8$ in eqn: $(1)$,


    $\begin{aligned}
    &\\
    &a^{2}+(2 a-8)^{2}-4 a-2(2 a-8)=5 \\\\
    &a^{2}+4 a^{2}-32 a+64-4 a-4 a+16-5=0\\\\
    &5 a^{2}-40 a+75=0 \\\\
    &a^{2}-8 a+15=0 \\\\
    &a=3 \text { or } a=5 \\\\
    &\text { When } a=3, b=-2 \\\\
    &\text { When } a=5, b=2\\\\
    \end{aligned}$


    Let the coordinates of the point $P$ and $Q$ be $(3,-2)$ and $(5,2)\\\\\\ $.


    gradient of $R P=\dfrac{-2+1}{3-6}=\dfrac{1}{3}\\\\ $


    $\therefore$ gradient of $R Q=-3\quad (\because RP\perp RQ) \\\\ $


    The equation of tangent $P R$ is


    $\begin{aligned}
    &\\
    y+1 &=\dfrac{1}{3}(x-6) \\\\
    y &=\dfrac{1}{3} x-3\\\\
    \end{aligned}$


    The equation of tangent $R Q$ is


    $\begin{aligned}
    &\\
    y+1 &=-3(x-6) \\\\
    y &=-3 x+17\\\\
    \end{aligned}$







  10. The circle $C$ has equation $(x-7)^{2}+(y+1)^{2}=5$.
    The line $l$ with positive gradient passes through $(0,-2)$ and is a tangent to the circle.
    Find an equation of $l$, giving your answer in the form $y=m x+c$.





    SOLUTION
    Circle: $(x-7)^{2}+(y+1)^{2}=5\\\\ $


    Centre: $(7,-1)\\\\ $


    Let $Q=(0,-2)$ and $l$ touch the circle at $(a, b).\\\\ $


    $\therefore\ (a-7)^{2}+(b+1)^{2}=5\\\\ $


    $a^{2}-14 a+49+b^{2}+2 b+1=5\\\\ $


    $a^{2}+b^{2}-14 a+2 b=-45 --- (1)\\\\ $


    $\begin{aligned}
    P Q^{2} &=O Q^{2}-O P^{2} \\\\
    a^{2}+(b+2)^{2} &=7^{2}+(-1+2)^{2}-5 \\\\
    &=45 \\\\
    a^{2}+b^{2}+4 b+4 &=45 \\\\
    a^{2}+b^{2}+4 b &=41---(2)\\\\
    \end{aligned}$


    Subtracting eqn: (1) from equation(2),


    $\begin{aligned}
    &\\
    14 a+2 b &=86 \\\\
    7 a+b &=43 \\\\
    b &=43-7 a\\\\
    \end{aligned}$


    Substitue $b=43-7 a$ in equation (2),


    $\begin{aligned}
    &\\
    a^{2}+(43-7 a)^{2}+4(43-7 a)&=41 \\\\
    50 a^{2}-630 a+1980&=0 \\\\
    \therefore a=6 \text { or } a&=\dfrac{33}{5}\\\\
    \end{aligned}$


    When $a=6, b=1\\\\ $


    When $a=\dfrac{33}{5}, b=-\dfrac{16}{5}\\\\ $


    Since the gradient of $l=\dfrac{b+2}{a}>0\\\\ $,


    we have to choose $a=6$and $b=1\\\\ $.


    $\therefore$ gradient of $l=\dfrac{1+2}{6}=\dfrac{1}{2}\\\\ $


    The line equation of $l$ is $y+2=\dfrac{1}{2} x \Rightarrow y=\dfrac{1}{2} x-2\\\\ $.


Post a Comment for "Analytic Geometry : The Circles"

Sponsored by: iklanvideo.io