Skip to content Skip to sidebar Skip to footer

Exercise (9.1) - Sloutions (Grade 10, New Syllabus)







ပန်းတိုင်း မွှေးပါစေ























Exercise (9.1) ၏ မေးခွန်း ပုစ္ဆာများကို ဖြေရှင်းရန် ပြဌာန်းစာအုပ်ပါ Theorem (1) မှ Theorem (4) အထိ သီအိုရမ် မှန်ကန်ချက်များကို ဦးစွာလေ့လာထားရမည် ဖြစ်ပါသည်။
Theorem (1) မှ Theorem (4) အထိ ရှင်းလင်းချက်များကို ဒီ post မှာ လေ့လာနိုင်ပါသည်။








Ex 9.1-No (1)




The point $O$ is the centre of the given circle. Find the values of $x$, $y$ and $z$.





(a)
















$\begin{array}{l}
x=\angle A D C(\angle \mathrm{s} \text { on arc } A C) \\\\
\therefore x=70^{\circ}\\\\
A B C D \text { is cyclic quadrilateral. }\\\\
70^{\circ}+\beta=180^{\circ}\\\\
\therefore \beta=180^{\circ}-70^{\circ}=110^{\circ} \\\\
\text { Since } A D / / \mathrm{BC}, \\\\
\theta=\angle C A D \\\\
\therefore \quad \theta=30^{\circ} \\\\
\therefore \quad y\ =180^{\circ}-(\beta+\theta) \\\\
\quad \quad\quad =180^{\circ}-\left(110^{\circ}+30^{\circ}\right) \\\\
\quad\quad\quad =40^{\circ}
\end{array}$










(b)



















$\begin{array}{l}
\text { Since } A C=A D, \angle A C D=x \\\\
\text{In}\ \Delta A C D, x+x=150^{\circ} \\\\
\therefore\ 2 x=150^{\circ} \Rightarrow x=75^{\circ}\\\\
A B C D \text { is a cyclic quadrilateral. }\\\\
\therefore x+\phi=180^{\circ}\\\\
\therefore\ \ \phi\ =180^{\circ}-x \\\\
\quad\quad =180^{\circ}-75^{\circ} \\\\
\quad\quad =105^{\circ} \\\\
\text { Since } A B=B C, \angle B A C=y . \\\\
\text { In } \Delta A B C, 2 y+\phi=180^{\circ} \\\\
\therefore\ 2 y=180^{\circ}-\phi \\\\
\quad\quad\ =180^{\circ}-105^{\circ} \\\\
\quad\ y\ \ =37.5^{\circ}
\end{array}$









(c)


















$\begin{aligned}
\angle B O D &=360^{\circ}-240^{\circ} \\\\
& =120^{\circ} \\\\
x &=\displaystyle\frac{1}{2} \angle B O D \\\\
&=\displaystyle\frac{1}{2}\left(120^{\circ}\right) \\\\
&=60^{\circ} \\\\
\theta &=\displaystyle\frac{1}{2}\left(240^{\circ}\right) \\\\
\therefore\quad\theta &=120^{\circ} \\\\
\therefore\quad y &=360^{\circ}-\left(120^{\circ}+120^{\circ}+55^{\circ}\right) \\\\
&=65^{\circ}
\end{aligned}$






(d)















In $\Delta A D E$,



$\theta=180^{\circ}-\left(30^{\circ}+40^{\circ}\right)=110^{\circ}$



$A C D E$ is a cyclic quadrilateral.



$\begin{aligned}
\therefore y+ \theta &=180^{\circ} \\\\
\therefore y \quad &=180^{\circ}-\theta \\\\
&=180^{\circ}-110^{\circ} \\\\
&=70^{\circ}
\end{aligned}$



In $\Delta A C D, A C =A D$.



$\therefore\quad \angle A D C=y$



$A C D E$ is a cyclic quadrilateral.



$\begin{aligned}
\therefore\quad x+y & =180^{\circ} \\\\
\therefore\quad x \quad &=180^{\circ}-y \\\\
&=180^{\circ}-70^{\circ} \\\\
&=110^{\circ}
\end{aligned}$









(e)

















Since $O A=O B\ \text{( radii )}$



$\therefore\quad \theta=50^{\circ}$



$A B D E$ is a cyclic quadrilateral.



$\therefore\quad x+60^{\circ}+\theta=180^{\circ}$



$\begin{aligned}
\therefore \quad x & =180^{\circ}-\left(60^{\circ}+\theta\right) \\\\
& =180^{\circ}-\left(60^{\circ}+50^{\circ}\right) \\\\
& =70^{\circ}
\end{aligned}$



$C E$ is a diameter.



$\therefore \angle C D E=90^{\circ}$



$\begin{aligned}
\therefore \quad x+y & =90^{\circ}\\\\
\therefore \quad y & =90^{\circ}-x\\\\
& =90^{\circ}-70^{\circ}\\\\
& =20^{\circ}
\end{aligned}$








(f)
















$A B D E$ is a cyclic quadrilateral.


$\therefore y=110^{\circ}$


Since $\text{arc}\ A D=\text{arc}\ B C,$


$A D=B C$


$\therefore\quad A B D E$ is isosceles trapezium.


$\therefore\quad x=y=110^{\circ}$


$x+z=180^{\circ}$


$\therefore\quad z=180^{\circ}-x$


$\quad\quad =180^{\circ}-110^{\circ}$


$\quad\quad =70^{\circ}$











Ex 9.1-No (2)




$ABC$ is an acute triangle inscribed in $\odot O$, and $OD$ is the perpendicular
drawn $O$ to $BC$. Prove that $\angle BOD = \angle BAC$.

















$\begin{array}{l}
\text { Join }\ O C.\\\\
\text { In }\ \triangle BOD\ \text { and }\ \triangle COD,\\\\
\angle BDO = \angle CDO \ \text{(right angles)}\\\\
OB=OC \ \text{(radii)}\\\\
OD=OD \ \text{(common side)}\\\\
\therefore\quad \triangle B O D \cong \triangle C O D\\\\
\therefore\quad\angle B O D=\angle C O D=\displaystyle\frac{1}{2} \angle B O C\\\\
\text { But }\ \angle B A C=\displaystyle\frac{1}{2} \angle B O C\\\\
\therefore\quad\angle B O D=\angle BAC
\end{array}$











Ex 9.1-No (3)




In $\odot O$, two chords $A B$ and $C D$ intersect in the circle at $P$.
Show that $\angle A P D=\displaystyle\frac{1}{2}(\angle A O D+\angle B O C)$.















Join $A C$


In $\triangle A P C$,


$\begin{aligned}
\angle A P D & =\angle P C A+\angle P A C \\\\
& =\angle D C A+\angle B A C \\\\
& =\displaystyle\frac{1}{2} \angle A O D+\displaystyle\frac{1}{2} \angle B O C \\\\
& =\displaystyle\frac{1}{2}(\angle A O D+\angle B O C) \end{aligned}$












Ex 9.1-No (4)




Two circles intersect at $M, N$. From $M$, diameters $M A, M B$ are drawn
in each circle. If $A, B$ are joined to $N$, prove that $A N B$ is a straight line.
















$\begin{array}{lll}
\text{Given} &: & \odot O\ \text{and}\ \odot P\ \text{intersect at}\ M \text{and}\ N.\\\\
& & M A\ \text{and}\ M B\ \text{are diameters of}\ \odot O\ \text{and}\\\\
& & \odot P\ \text{and respectively.}\\\\
\text{To Prove} &: & A N B\ \text{is a straight line.}\\\\
\text{Proof} &: & \text{Join}\ M N.\\\\
& & \text{In}\ \odot O, \angle A N M=90^{\circ} \quad(AM\ \text{is a diameter} )\\\\
& & \text{In}\ \odot P, \angle B N M=90^{\circ} \quad(BM\ \text{is a diameter} )\\\\
& & \therefore\quad \angle A N M+\angle B N M=180^{\circ}\\\\
& & \therefore\quad A N B\ \text{ is a straight line.}
\end{array}$









Ex 9.1-No (5)




$OA$ and $O B$ are two radii of a circle meeting at right angles. From $A, B$
two parallel chords $A X, B Y$ are drawn. Prove that $A Y \perp B X$.


















$\begin{array}{lll}
\text{Given} &: & O A \perp O B, A X \parallel B Y\\\\
\text{To Prove} &: & A Y \perp B X .\\\\
\text{Proof} &: & \text{Let}\ A Y\ \text{cut}\ B X\ \text{at}\ D \\\\
& & \alpha=\gamma \quad(\angle\mathrm{s}\ \text{stand on arc}\ AB )\\\\
& & \text{But}\ \alpha=\gamma=\displaystyle\frac{1}{2} \angle A O B \\\\
& & \alpha=\gamma=\displaystyle\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}\\\\
& & \text{Since} A X \parallel B Y,\\\\
& & \alpha=\beta \quad (\text{alternating} \angle \mathrm{s})\\\\
& & \therefore\quad \beta=45^{\circ}\\\\
& & \text{Since} \angle A D B=\beta+\gamma,\\\\
& & \angle A D B=90^{\circ}\\\\
& & \therefore\quad A Y \perp B X.\\\\
\end{array}$











Ex 9.1-No (6)




Two circles intersect at $R$ and $S$. Two straight lines $A R B$ and $C S D$
are drawn meeting one circle at $A, C$ and the other at $B, D$. Prove that
$A C \parallel B D .$ If $A B \parallel C D$, show that $A B=C D$.


















Join $RS$


$ACSR$ is a cyclic quadrilateral.


$\therefore\quad \alpha=\theta$


$BDSR$ is also a cyclic quadrilateral.


$\therefore\quad \beta+\theta = 180^{\circ}$


$\therefore\quad \alpha+\beta= 180^{\circ}$


$\therefore\quad A C \parallel B D$


If $A B \parallel C D$, $ABDC$ is a parallelogram.


then we can say $A B=C D$








Post a Comment for "Exercise (9.1) - Sloutions (Grade 10, New Syllabus)"

Sponsored by: iklanvideo.io