Processing math: 100%
Skip to content Skip to sidebar Skip to footer

Sample Question for 2020 Matriculation Examination


2020
MATRICULATION EXAMINATION
Sample Question Set (3)
MATHEMATICS                        Time allowed: 3hours
WRITE YOUR ANSWERS IN THE ANSWER BOOKLET.
SECTION (A)
(Answer ALL questions.) 

1 (a).     Let f:R{±2}R be a function defined by f(x)=3xx24.Find the positive value of z such that f(z)=1.

(3 marks)

Show/Hide Solution

f(x)=3xx24f(z)=13zz24=1z24=3zz23z4=0(z+1)(z4)=0z=1 or z=4Since z>0, z=4

1(b).     If the polynomial x33x2+axb is divided by (x2) and (x+2), the remainders are 21 and 1 respectively. Find the values of a and b.


(3 marks)

Show/Hide Solution

Let f(x)=x33x2+axbWhen f(x) is divided by (x2), The remainder is 21.f(2)=21(2)33(2)2+a(2)b=212ab=25 (1)When f(x) is divided by (x+2), The remainder is 1.f(2)=1(2)33(2)2+a(2)b=12a+b=21 (2)(1)+(2)4a=4a=1(1)(2)2b=46b=23

2(a).     Find the middle term in the expansion of (x22y)10.
(3 marks)

Show/Hide Solution

(r+1)th term in the expansion of (x22y)10=10Cr(x2)10r(2y)r middle term in the expansion of (x22y)10=6th term                                                              =(5+1)th term                                                              =10C5(x2)105(2y)5                                                              =10×9×8×7×61×2×3×4×5x10(32y5)                                                              =8064x10y5

2(b).     In a sequence if u1=1 and un+1=un+3(n+1), find u5 .
(3 marks)

Show/Hide Solution

u1=1, un+1=un+3(n+1)u2=u1+1=u1+3(1+1)=1+6=7   u3=u2+1=u2+3(2+1)=7+9=16   u4=u3+1=u3+3(3+1)=16+12=28   u5=u4+1=u4+3(4+1)=28+15=43

3(a).     If P=(x48y9) and P1=(3x47y3), find the values of x and y.
(3 marks)

Show/Hide Solution

P=(x48y9), P1=(3x47y3)Since PP1=I,(x48y9)(3x47y3)=(1001)(3x2+28y4x1224x+3xy+63y54y)=(1001)3x2+28y=1y=3x2+128   4x12=0x=3  24x+3xy+63y=0   54y=1y=1 x=3 and y=1.

3(b).     A bag contains tickets, numbered 11,12,13,....,30. A ticket is taken out from the bag at random. Find the probability that the number on the drawn ticket is


(i) a multiple of 7

(ii) greater than 15 and a multiple of 5.


(3 marks)

Show/Hide Solution

Set of possible outcomes ={11, 12, 13, ..., 30}Number of possible outcomes =20Set of favourable outcomes for a number multiple of 7= { 14, 21, 28 } Number of favourable outcomes =3P(a number multiple of 7)=320Set of favourable outcomes for a number greater than 15 and a multiple of 5 = {  20, 25, 30 } Number of favourable outcomes =3P(a number greater than 15 and amultiple of 5)=320

4(a).     Draw a circle and a tangent TAS meeting it at A. Draw a chord AB making TAB= 60 and another chord BCTS. Prove that ABC is equilateral.


(3 marks)

Show/Hide Solution

Since BCTS,   β=TAB   [alternating ] β=60   γ=TAB   [ between tangent and chord                        = in alternate segment ] γ=60Since α+β+γ=180,α=180(β+γ)α=180(60+60)α=60α=β=γ ABC is equilateral.

4(b).     If 3 OA2OBOC =0, show that the points A,B and C are collinear.
(3 marks)

Show/Hide Solution

   3 OA2OBOC =02 OA2OB+OAOC =0   2 (OAOB)+(OAOC) =0   2BA+CA=02BA=CA2BA=AC A, B and C are collinear.

5(a).     Solve the equation 2sinxcosxcosx+2sinx1=0 for 0x 360.
(3 marks)

Show/Hide Solution

For 0x 360,2sinxcosxcosx+2sinx1=0cosx(2sinx1)+(2sinx1)=0(2sinx1)(cosx+1)=0sinx=12 or cosx=1(i) sinx=12    x=30 or x=150(ii) cosx=1     x=180x=30 or x=150 or x=180

5(b).     Differentiate y=13x from the first principles.
(3 marks)

Show/Hide Solution

y=13xy+δy=13x+δxδy=13x+δx13xδy=3x3x+δx3x3x+δxδyδx=13x3x+δx3x3x+δxδx     =13x3x+δx3x3x+δxx+δxx     =13x3x+δx3x3x+δx(3x+δx)3(3x)3     =13x3x+δx(3x+δx3x)(3x+δx)3(3x)3     =13x3x+δx(3x+δx3x)(3x+δx3x)[(3x+δx)2+(3x+δx)(3x)+(3x)2]     =13x3x+δx1(3x+δx)2+(3x+δx)(3x)+(3x)2dydx=limδx0δyδx     =limδx0[13x3x+δx1(3x+δx)2+(3x+δx)(3x)+(3x)2]     =13x3x1(3x)2+(3x)(3x)+(3x)2     =1(3x)21(3x)2+(3x)2+(3x)2     =13(3x)2(3x)2     =13(3x)4     

SECTION (B)
(Answer Any FOUR questions.) 

6 (a).    Given that Given A={xR| x12,x32}. If f:AA and g:AA are defined by f(x)=3x52x+1 and g(x)=x+532x, show that f and g are inverse of each other.
(5 marks)

Show/Hide Solution

A={xR| x12,x32}f:AA,f(x)=3x52x+1g:AA,g(x)=x+532x(fg)(x)=f(g(x))             =f(x+532x)             =3(x+532x)52(x+532x)+1             =3x+1515+10x32x2x+10+32x32x             =13x32x1332x             =x             =I(x)(gf)(x)=g(f(x))             =g(3x52x+1)             =(3x52x+1)+532(3x52x+1)             =3x5+10x+52x+16x+36x+102x+1             =13x2x+1132x+1             =x             =I(x)(fg)(x)=(gf)(x)=I(x)f=g1 and g=f1

6 (b).     Given that x5+ax3+bx23=(x21)Q(x)x2, where Q(x) is a polynomial. State the degree of Q(x) and find the values of a and b. Find also the remainder when Q(x) is divided by x+2.

(5 marks)

Show/Hide Solution

x5+ax3+bx23=(x21)Q(x)x2x5+ax3+bx2+x1=(x21)Q(x)degree of Q(x)=3x5+ax3+bx2+x1=(x21)Q(x)x5+ax3+bx2+x1=(x1)(x+1)Q(x)When x=11+a+b+11=(11)(1+1)Q(x)1+a+b=0a+b=1 (1)When x=11a+b11=(11)(1+1)Q(x)3a+b=0a+b=3   (2)(1)+(2)2b=2b=1(1)(2)2a=4a=2x52x3+x2+x1=(x21)Q(x)Q(x)=x52x3+x2+x1x21When Q(x) is divided by x+2the remainder is Q(2).Q(2)=(2)52(2)3+(2)2+(2)1(2)21            =5

7 (a).     The binary operation on R be defined by xy=x+y+10xy Show that the binary operation is commutative. Find the values b such that (1b)b=485.

(5 marks)

Show/Hide Solution

xy=x+y+10xyyx=y+x+10yx        =x+y+10xyxy=yx The binary operation is commutative.1b=1+b+10b(1b)b=(1+b+10b)b               =(1+b+10b)+b+10(1+b+10b)b               =1+22b+110b2(1b)b=4851+22b+110b2=485110b2+22b484=05b2+b22=0(5b+11)(b2)=0b=115 or b=2

7 (b).     If, in the expansion of (1+x)m(1x)n, the coefficient of x and x2 are 5 and 7 respectively, then find the value of m and n.

(5 marks)

Show/Hide Solution

(1+x)m(1x)n=(1+mC1x+mC2x2+...)(1nC1x+nC2x2+...)                     =1+(mC1nC1)x+(mC2mC1nC1+nC2)x2+...                     =1+(mn)x+(m(m1)2mn+n(n1)2)x2+...                     =1+(mn)x+(m22mn+n2(m+n)2)x2+...                     =1+(mn)x+((mn)2(m+n)2)x2+...By the problem,    mn=5                      (1)   (mn)2(m+n)2=7(5)2(m+n)2=7   25(m+n)=14   m+n=11                      (2)(1)+(2)2m=6m=3(1)(2)2n=16n=8

8 (a).     Find the solution set in R for the inequation 2x(x+2)(x+1)(x+3) and illustrate it on the number line.

(5 marks)

Show/Hide Solution

2x(x+2)(x+1)(x+3)2x2+4xx2+4x+3x230(x+3)(x3)0(x+30 and x30) or (x+30 and x30) (x3 and x3) or (x3 and x3) x3 or x3 Solution Set = {x | x3 or x3}Number Line


8 (b).     If the mth term of an A.P. is 1n and nth term is 1m where mn, then show that umn=1.

(5 marks)

Show/Hide Solution

Let the first and the common difference of the give A.P. be a and d respectively.By the problem,um=1na+(m1)d=1nna+mndnd=1      (1)un=1ma+(n1)d=1mma+mndmd=1    (2)(1)(2)a(nm)(nm)d=0(nm)(ad)=0Since mn,nm0.ad=0a=dBy equation (2), am+mndmd=1 mnd=1mna=1umn=a+(mn1)d        =d+mndd        =1

9 (a).     The sum of the first two terms of a geometric progression is 12 and the sum of the first four terms is 120. Calculate the two possible values of the fourth term in the progression.

(5 marks)

Show/Hide Solution

Let the first and the common ratio of the give G.P. be a and r respectively.By the problem,u1+u2=12a+ar=12a(1+r)=12       (1)u1+u2+u3+u4=12012+u3+u4=120u3+u4=108ar2+ar3=108ar2(1+r)=108(2)ar2(1+r)a(1+r)=10812   r2=9r=±3When r=3, a(13)=12 6u4=ar3=6(3)3=162When r=3, a(1+3)=12 3u4=ar3=3(3)3=81

9 (b).     Given that A=(cosθsinθsinθcosθ). If A+A=I where I is a unit matrix of order 2, find the value of θ for 0<θ<90.

(5 marks)

Show/Hide Solution

A=(cosθsinθsinθcosθ)A=(cosθsinθsinθcosθ)By the problem,A+A=I(cosθsinθsinθcosθ)+(cosθsinθsinθcosθ)=(1001)(2cosθ002cosθ)=(1001)2cosθ=1   cosθ=12   θ=60

10 (a).   The matrix A is given by A=(2345).
(a) Prove that A2=7A+2I where I is the unit matrix of order 2.
(b) Hence, show that A1=12 (A7I).

(5 marks)

Show/Hide Solution

A=(2345)A2=(2345)(2345)=(2×2+3×42×3+3×54×2+5×44×3+5×5)=(16212837)7A+2I=7(2345)+2(1001)=(14212835)+(2002)=(16212837)A2=7A+2IAAA1=7AA1+2IA1AI=7I+2A1A=7I+2A12A1=A7IA1=12(A7I)

10 (b).   Draw a tree diagram to list all possible outcomes when four fair coins are tossed simultaneously. Hence determine the probability of getting:
(a) all heads,
(b) two heads and two tails,
(c) more tails than heads,
(d) at least one tail,
(e) exactly one head.

(5 marks)

Show/Hide Solution

  Number of possible outcomes =16(i) The set of favourable outcomes for getting all heads ={(H,H,H,H)}    Number of favourable outcomes = 1    P (getting all heads) =116(ii) The set of favourable outcomes for getting two heads and two tails     ={(H,H,T,T), (H,T,H,T), (H,T,T,H), (T,H,H,T), (T,H,T,H), (T,T,H,H)}    Number of favourable outcomes = 6    P (getting two heads and two tails) =616=38(iii) The set of favourable outcomes for getting more tails than heads     ={(H,T,T,T), (T,H,T,T), (T,T,H,T), (T,T,T,H)}    Number of favourable outcomes = 4    P (getting more tails than heads) =416=14(iv) P (getting at least one tail)=1P (no tail)                                            =1P (all head)                                            =1116                                            =1516(v) The set of favourable outcomes for getting exactly one head     ={(H,T,T,T), (T,H,T,T), (T,T,H,T), (T,T,T,H)}    Number of favourable outcomes = 4    P (getting exactly one head) =416=14

SECTION (C)
(Answer Any THREE questions.) 

11 (a).   PQR is a triangle inscribed in a circle. The tangent at P meet RQ produced at T,and PC bisecting RPQ meets side RQ at C. Prove TPC is isosceles.

(5 marks)

Show/Hide Solution

TPC=β+γR=γ   [ between tangent and chord                 = in alternate segment ] Since PC bisects RPQ, β=αTPC=α+RIn RPC, PCT=α+RTPC=PCTTPC is isosceles.

11 (b).   In ABC, D is a point of AC such that AD=2CD. E is on BC such that DEAB. Compare the areas of CDE and ABC. If α(ABED)=40, what is α(ΔABC)?

(5 marks)

Show/Hide Solution

   AD= 2CD  [ given ]    DEAB CABCDEα(CAB)α(CDE)=AC2CD2                  =(AD+CD)2CD2                  =(2CD+CD)2CD2                  =9CD2CD2                  =9α(CAB)α(CAB)α(CDE)=991α(CAB)α(ABED)=98α(CAB)=98α(ABED)                 =98×40                 =45 sq-unit

12 (a).   If L,M,N, are the middle points of the sides of the ABC, and P is the foot of perpendicular from A to BC. Prove that L,N,P,M are concyclic.

(5 marks)

Sponsored by: iklanvideo.io
Show/Hide Solution

Since APBC and M is the midpoint of ACa circle with centre M and diameter AC will pass through P.MP = MC [ radii of M ] γ = ϕ.Since L and N are the midpoints of AB and BCLNAC and LN=12AC.Similarly LMBC and LM=12BC.LMCN is a parallelogram.γ =θϕ =θSince ϕ+MPN= 180, θ+MPN= 180,L, N, P, M are concyclic.

12 (b).   Solve the equation 3cosθ+sinθ=2 for 0θ360.

(5 marks)

Show/Hide Solution

3cosθ+sinθ=2, 0θ360Let Rcosα=3 and Rsinα=1 where R>0 and α<90.R2cos2α+R2sin2α=3+1 R2(cos2α+sin2α)=4 R2=4R=2    RsinαRcosα=13 tanα= 13α=30Now   3cosθ+sinθ        =Rcosθcosα+Rsinθsinα        =R(cosθcosα+sinθsinα)        =Rcos(θα)        =2cos(θ30)2cos(θ30)=2cos(θ30)=22θ30=45 or θ30=315θ=75 or θ=345

13 (a).   In ABC,AB=x,BC=x+2, AC=x2 where x>4, prove that cosA=x82(x2). Find the integral values of x for which A is obtuse.

(5 marks)

Show/Hide Solution

ABC,AB=x,BC=x+2,AC=x2, x>4

cosA=AB2+AC2BC22ABAC

        =x2+(x2)2(x+2)22x(x2)

        =x2+x24x+4x24x42x(x2)

        =x28x2x(x2)

        =x(x8)2x(x2)

        =x82(x2)

SinceA is obtuse.

cosA<0

x82(x2)<0

Since x>4, x2>2.

x8<0x<8

$ \displaystyle \therefore 4
 The integral value of x are 5, 6 and 7.


13 (b).   The sum of the perimeters of a circle and square is k, where k is some constant. Using calculus, prove that the sum of their areas is least, when the side of the square is double the radius of the circle.

(5 marks)

Show/Hide Solution

 Let the side-length of a square be x and the radius of the circle be r Sum of perimeters =k( given )4x+2πr=kr=k4x2π Let the sum of the areas be A.A=x2+πr2A=x2+π(k4x2π)2A=x2+(k4x)24πdAdx=2x+2(4)(k4x)4π=2(x+4xkπ)=2π[(π+4)xk]dAdx=0 when 2π[(π+4)xk]=0(π+4)xk=0x=kπ+4d2Adx2=2(π+4)π>0A is minimum when x=kπ+4r=12π[k4kπ+4]     =12π[πk+4k4kπ+4]     =12(kπ+4)     =x2x=2rHence the sum of their areas is least,when the side of the square is double the radius of the circle.

14 (a).  The vector OA has magnitude 39 units and has the same direction as 5ˆi+12ˆj. The vector OB has magnitude 25 units and has the same direction as 3ˆi+4ˆj. Express OA and OB in terms of ˆi and ˆj and find the magnitude of AB.

(5 marks)

Show/Hide Solution

 Let p=5ˆı+12ˆȷ and q=3ˆı+4ˆȷ |p|=52+122=169=13 and   |q|=(3)2+42=25=5ˆp=p|p|=113(5ˆı+12ˆȷ) and    ˆq=q|q|=15(3ˆı+4ˆȷ)   |OA|=39 and OA has the same direction ˆp.OA=39ˆp        =39×113(5ˆı+12ˆȷ)=15ˆı+36ˆȷ        =15ˆı+36ˆȷ Similarly,   |OB| =25 and OB has the same direction ˆq OB=25ˆq        =25×15(3ˆı+4ˆȷ)=15ˆı+20ˆȷ        =15ˆı+20ˆȷAB=OBOA        =(15ˆı+20ˆȷ)(15ˆı+36ˆȷ)        =30ˆı16ˆȷ |AB| =(30)2+(16)2           =1156           =34

14 (b).  Find the coordinates of the stationary points of the curve y=xlnx2x. Determine whether it is a maximum or a minimum point.

(5 marks)

Show/Hide Solution

Curve : y=xlnx2xdydx=x(1x)+lnx2    =lnx1dydx=0 when lnx1=0ln x=1x=e(lnx=logex)When x=e,y=elne2e   =e The stationary point is (e,e)d2ydx2=1xd2ydx2|x=e=1e>0(e,e) is a minimum point နားလည်လွယ်ကူစေရန် illustration ထည့်ပေးခြင်း ဖြစ်သည်။ ဖြေဆိုသည့်အခါ ပုံထည့်ဆွဲပေးရန်မလိုပါ။

Post a Comment for "Sample Question for 2020 Matriculation Examination"