Trigonometric Ratios of (90° + θ)
In △PON,
sinθ=y
cosθ=x
tanθ=yx
cotθ=xy
secθ=1x
cosecθ=1y
Since △P′ON′≅△OPN,
y′=x and x′=y numerically.
But P′(x′,y′) lies in the second quadrant.
∴y′=x and x′=−y.
sin(90∘+θ)=y′=x=cosθ
cos(90∘+θ)=x′=−y=−sinθ
tan(90∘+θ)=y′x′=−xy=cotθ
cot(90∘+θ)=x′y′=−yx=tanθ
sec(90∘+θ)=1x′=−1y=−cosecθ
cosec(90∘+θ)=1y′=1x=secθ
θ တန္ဖိုး႐ိုက္ထည့္ၾကည့္ပါ။
sinθ=y
cosθ=x
tanθ=yx
cotθ=xy
secθ=1x
cosecθ=1y
Since △P′ON′≅△OPN,
y′=x and x′=y numerically.
But P′(x′,y′) lies in the second quadrant.
∴y′=x and x′=−y.
sin(90∘+θ)=y′=x=cosθ
cos(90∘+θ)=x′=−y=−sinθ
tan(90∘+θ)=y′x′=−xy=cotθ
cot(90∘+θ)=x′y′=−yx=tanθ
sec(90∘+θ)=1x′=−1y=−cosecθ
cosec(90∘+θ)=1y′=1x=secθ
θ တန္ဖိုး႐ိုက္ထည့္ၾကည့္ပါ။
Post a Comment for "Trigonometric Ratios of (90° + θ) "