Skip to content Skip to sidebar Skip to footer

The Remainder Theorem and The Factor Theorem

Theorem ကိုမရွင္းျပခင္ Polynomial ဆိုတာကို ရွင္းျပခ်င္ပါတယ္။

Polynomial

ကိန္းရွင္(variable) တစ္ခုရဲ့ ထပ္ကိန္းမ်ား ပါ၀င္တဲ့ ကိန္းတန္း တစ္ခု (တနည္းေျပာရင္ function တစ္ခု) ကို polynomial လို႔ေခၚပါတယ္။ x ပါ၀င္တဲ့ ကိန္းတန္းတစ္ခုကို f(x),g(x), h(x),Q(x) စသည္ျဖင့္ သတ္မွတ္ႏိုင္ပါတယ္။ ဥပမာ ကိန္းတန္းမ်ားကို ၾကည့္ပါ။

Polynomial တစ္ခုရဲ့ အႀကီးဆံုးထပ္ကိန္းကို ၎ကိန္းတန္းရဲ့ order လို႔ သတ္မွတ္ႏိုင္ပါတယ္။ အထက္မွာ ေျပာခဲ့တဲ့ polynomial ေတြရဲ့ order ကို ေျပာရမယ္ဆိုရင္ f(x) က order 5၊ g(x) က order 4၊ h(x) က order 1 ျဖစ္ပါတယ္။

Remainder Theorem ဆိုတာက Polynomial of any order ကို polynomial of order 1 နဲ႔ စားတဲ့အခါ ရလာမယ့္ remainder (အၾကြင္း) ကို ရွာယူမွာ ျဖစ္ပါတယ္။


Remainder Theorem

If the polynomial f(x) is divided by (x-k) where k is a constant, the remainder is f(k).

f(x)÷ (x-k)=>Remainder=f(k))

Proof: Let Q(x) be the quotient and R be the remainder when f(x) is divided by (x-k).

Therefore f(x) = Q(x) (x-k) + R

f(k) = Q(k) (k-k) + R

f(k) = 0 +R and

f(k) = R.

Therefore the remainder theorem is satisfied.

Note:

Q(x) = quotient = စားလဒ္

f(x) = dividend = တည္ကိန္း

(x-k) = divisor = စားကိန္း (သို႔) စားေျခ

Dividend
Divisor
= Quotient + Remainder
Divisor


Extension of Remainder Theorem

f(x)÷(x+k) => Remainder = f(-k)

f(x)÷(ax-b) => Remainder = f(b/a)

f(x)÷(ax+b) => Remainder = f(-b/a)

f(x)÷(p-qx) => Remainder = f(p/q)

f(x)÷(p+qx) => Remainder = f(-p/q)

f(x)÷ax => Remainder = f(0)

f(x)÷x => Remainder = f(0)


Example 3
Find the remainder when x3 + 4x2 - 7x + 6 is divided by x - 1.

http://i627.photobucket.com/albums/tt352/Thu-Rein/template/th_bluearrow.gif Let f(x) = x3 + 4x2 - 7x + 6
f(1) = 13 + 4 (1)2 - 7 + 6
= 4


Example 4
Given that the expression 2x3 + 3px2 - 4x + p has a remainder of 5 when divided by x + 2, find the value of p.

http://i627.photobucket.com/albums/tt352/Thu-Rein/template/th_bluearrow.gif Let f(x) = 2x3 + 3px2 - 4x + p
f (-2) = 2(-2)3 + 3(-2)2p - 4(-2) + p = 5
13p - 8 = 5
13p = 13
p = 1


Example 5
If the expression ax4 + bx3 - x2 + 2x + 3 has remainder 4x + 3 when divided by x2 + x - 2, find the value of a and b.

http://i627.photobucket.com/albums/tt352/Thu-Rein/template/th_bluearrow.gif Let f(x) = ax4 + bx3 - x2 + 2x + 3
x2 + x - 2 = (x + 2)(x - 1)
f(-2) = a(-2)4 + b(-2)3 - (-2)2 + 2(-2) + 3 = 4(-2) + 3
16a - 8b - 4 - 4 + 3 = -5
2a - b = 0 --------(1)
f(1) = a + b - 1 + 2 + 3 = 4(1) + 3
a + b = 3 --------(2)
(1) + (2) : 3a = 3
a = 1
when a = 1, b = 2.

Post a Comment for "The Remainder Theorem and The Factor Theorem"

Sponsored by: iklanvideo.io